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1 Introduction

We participated in the SM-KBP 2020 evaluation
using our dockerlized GAIA system, an end-to-
end knowledge extraction, grounding, inference,
clustering, temporal tracking and hypothesis gen-
eration system, as shown in Figure 1. Our TA1
system achieves top performance at both intrinsic
evaluation and extrinsic evaluation through TA2
and TA3. In the past year, we integrate the fol-
lowing innovations:

• Multilingual Joint Information Extraction
with Global Knowledge: We propose an
end-to-end neural model ONEIE to extract
entities, relations and events jointly in a lan-
guage independent fashion. Existing joint
neural models for Information Extraction
(IE) use local task-specific classifiers to pre-
dict labels for individual instances (e.g., trig-
ger, relation) regardless of their interactions.
For example, a VICTIM of a DIE event is
likely to be a VICTIM of an ATTACK event
in the same sentence. Our model can cap-
ture such cross-subtask and cross-instance
inter-dependencies, we extract the globally
optimal information network by consider-
ing the inter-dependency among nodes and
edges. At the decoding stage, we incorporate
global features to capture the cross-subtask

and cross-instance interactions. As ONEIE
does not use any language-specific feature,
we prove it can be easily applied to new lan-
guages or trained in a multilingual manner.

• Document-Level Event Argument Role
Labeling: Event extraction has long been
treated as a sentence-level task in the Infor-
mation Extraction community. We argue that
this setting does not match human informa-
tive seeking behavior and leads to incomplete
and uninformative extraction results. We pro-
pose a document-level neural event argument
extraction model by formulating the task as
conditional generation following event tem-
plates.

• Symbolic Semantics Enhanced Event
Coreference Resolution: We propose a
novel context-dependent gated module to
incorporate a wide range of symbolic fea-
tures (e.g., event types and attributes) into
event coreference resolution. Simply con-
catenating symbolic features with contextual
embeddings is not optimal, since the features
can be noisy and contain errors. Also,
depending on the context, some features can
be more informative than others. Therefore,
the gated module extracts information from
the symbolic features selectively. Combined
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Figure 1: The architecture of GAIA multimedia knowledge extraction system.

with a simple regularization method that
randomly adds noise to the features during
training, our best event coreference models
achieve state-of-the-art results on public
benchmark datasets such as ACE 2005 and
KBP 2016.

• Event Temporal Attribute Extraction and
Propagation via Graph Attention Net-
works: We propose a graph attention net-
works based approach to propagate tempo-
ral information over document-level event
graphs constructed by shared entity argu-
ments and temporal relations. To better eval-
uate our approach, we have developed a chal-
lenging new benchmark, where more than
78% of events do not have time spans men-
tioned explicitly in their local contexts. The
proposed approach yields an absolute gain of
7.0% in match rate over contextualized em-
bedding approaches, and 16.3% higher match
rate compared to sentence-level manual event
time argument annotation.

• Implicit/Explicit Relation Extraction and
Source Identification: We extend our infor-
mation extraction capabilities with an ensem-
ble of neural zero-shot and few-shot tech-
niques designed to identify a subset of rela-

tion types whose expression is both explicit
and implicit (like blame). In addition to these
challenging relation types, this component
also identifies source information for every
event, enabling better perspective clustering
during TA3 hypothesis generation.

• Cross-media Structured Common Seman-
tic Space for Multimedia Event Extrac-
tion: We propose and develop a new multi-
media Event Extraction (M2E2) task that in-
volves jointly extracting events and argu-
ments from text and image. We propose a
weakly supervised framework which learns
to encode structures extracted from text and
images into a common semantic embedding
space. This structured common space en-
ables us to share and transfer resources across
data modalities for event extraction and argu-
ment role labeling.

• Video Multimedia Event Extraction and
argument labeling We extend the multi-
media Event Extraction (M2E2) task to ex-
tracts events and arguments from videos and
article pairs. We propose a self-supervised
multimodal transformer that learns the multi-
modal context from each modality by utiliz-
ing the self-attention mechanism and learning



to predict the event types and argument roles
from both modalities in a sequential decoder.
This proposed architecture allows us to fully
learn the interaction between event and argu-
ment information from both modalities and
jointly extract events and argument roles.

2 TA1 Text Knowledge Extraction

2.1 Approach Overview

We dockerize an end-to-end fine-grained knowl-
edge extraction system for 179 entity types, 149
event types, and 50 event types defined in AIDA
ontology. As shown in Figure 1, it supports the
joint extraction of entities, relations and events
from multilingual corpus (English, Russian and
Spanish), and performs coreference resolution
over entities and events. We will present the de-
tails of each component in the following sections.

2.2 Joint Entity, Relation and Event Mention
Extraction

We use a sentence-level joint neural model (Lin
et al., 2020) to extract entities, relations, and
events from text. For English, we train two sep-
arate IE models. The first model is trained on
ACE and ERE English data that are mapped to the
AIDA ontology. Another model is trained on doc-
uments we annotate for new AIDA types. Sim-
ilarly, we trained two IE models for Spanish on
ERE data and our own annotations respectively.
We further enhance the Spanish model with trans-
fer learning by adding English training data with a
lower sampling rate (0.1 in our experiments). For
Russian, we only train a single model on our Rus-
sian and English annotations in a multilingual way
because it is not included in ACE or ERE. We use
RoBERTa (Liu et al., 2019) for English and XLM-
RoBERTa (Conneau et al., 2019) for Spanish and
Russian to obtain contextualized word representa-
tions.

2.3 Document-level Argument Extraction

Given the event triggers detected from the previ-
ous module, document-level argument extraction
aims to additionally look for cross-sentence argu-
ments.

We frame this problem as conditional genera-
tion given an event template. An example of the
converted input and output is shown in Figure 2.
The event template is a sentence that describes ar-
guments of an event type with 〈arg〉 placeholders.

Output

Arg 1 
Giver:
 Elliot  

Arg 2 Recipient: 
McVeigh 

Arg 3 
AcquiredEntity:

truck

Arg 4 
PaymentBarter:

$280.32

Arg 6 Place:
body shop

Elliott bought, sold or traded truck to McVeigh in exchange for 
$280.32 for the benefit of <arg> at body shop place

<arg1> bought, sold, or traded <arg3> to <arg2> in exchange 
for <arg4> for the benefit of <arg5> at <arg6> placeTemplate

Prosecutors say he drove the truck to Geary Lake in Kansas, 
that 4,000 pounds of ammonium nitrate laced with 
nitromethane were loaded into the truck there, and that it was 
driven to Oklahoma City and detonated. 

Elliott said that McVeigh gave him the $280.32 in exact 
change after declining to pay an additional amount for 
insurance.

Elliott testified that on April 15, McVeigh came into the body 
shop and <tgr> reserved <tgr> the truck, to be picked up at 
4pm two days later.  Document

Figure 2: An example of document-level argument ex-
traction formulated as text generation.

The generated output is a filled template where
placeholders are replaced by concrete arguments.
Note that one template is used for all event in-
stances within the same type and such templates
are already part of the AIDA ontology.

Our base model is an encoder-decoder language
model BART (Lewis et al., 2020). The gener-
ation process models the conditional probability
of selecting a new token given the previous to-
kens and the input to the encoder. To utilize
the encoder-decoder LM for argument extraction,
we construct an input sequence of 〈s〉 template
〈s〉〈/s〉document 〈/s〉. All argument names (arg1,
arg2 etc.) in the template are replaced by a single
special placeholder token 〈arg〉.

The generation probability is computed by tak-
ing the dot product between the decoder output
and the embeddings of tokens from the input. To
prevent the model from hallucinating arguments,
we restrict the vocabulary of words to Vc: the set
of tokens in the input.

p(xi = w|x<i, c, t) =
{

Softmax
(
hTi Emb(w)

)
w ∈ Vc

0 w /∈ Vc
(1)

The model is trained end-to-end by minimizing the
negative loglikelihood over all (content, template,
output) instances in the dataset D:

L(D) = −
|D|∑
i=1

log pθ
(
xi | ci

)
(2)

Missing arguments and multiple arguments in
the same role are common cases in the argument
extraction task. For missing arguments, we train
the model to generate the special 〈arg〉 token. For



multiple arguments, we add the keyword “add” be-
tween the arguments. For example in ACE 2005
we have this sentence: “Afterwards Shalom was
to fly on to London for talks with British Prime
Minister Tony Blair and Foreign Secretary Jack
Straw.”. The input template is “〈arg〉 met with
〈arg〉 at 〈arg〉 place” and the generation output is
“Shalom met with Tony Blair and Jack Straw at
London place”.

To align the predictions of the model back to the
text for downstream modules, we adopt the simple
heuristic of matching the closest occurrence of the
predicted argument to the trigger.

2.4 Informative Justification Extraction

For named entities, we generate informative jus-
tification using the longest name mention. For
nominal entities, we apply a syntactic tree parser1

and select the sub-tree whose syntactic head word
matches the nominal entity mention. For events,
we use the first substring covering the trigger word
and arguments as informative justification.

2.5 Fine-grained Typing

We follow (Li et al., 2019) to detect fine-grained
types for entities, relations and events. For event
fine-grained typing, we annotate the newly added
ten event types and train an extractor for these new
types.

As aforementioned in Section 2.2, we train sep-
arate IE models on different datasets and combine
their outputs. Although ACE and ERE datasets
contain much more training instances with higher
annotation quality, they only cover an incomplete
set of event types in the AIDA ontology. By con-
trast, our new datasets are smaller but have a more
complete coverage of the new types. Therefore,
we prioritize results predicted by models trained
on ACE and ERE data when resolving conflicts in
the process of merging IE results. For example,
if the first model predicts “Brooklyn Bridge” as a
FAC entity, while the second model predicts it as a
LOC, we keep the FAC label in this case.

2.6 Entity Linking and Coreference
Resolution

2.6.1 Entity Linking
We follow (Li et al., 2019) to link entities to back-
ground KB and Freebase for English and Russian.
For Spanish, we use translation dictionaries mined

1https://spacy.io/

from Wikipedia (Ji et al., 2009) to translate each
mention into English first.

2.6.2 Entity Coreference Resolution
For Russian entity coreference resolution, we fol-
low the approach of Li et al. (2019). For English
and Spanish, we implement neural models simi-
lar to the bert-coref model (Joshi et al., 2019).
However, there are several important differences.
First, we remove the higher-order inference (HOI)
layer (Lee et al., 2018) from the original architec-
ture. Our preliminary results suggest that HOI typ-
ically does not improve the coreference resolution
performance while incurring additional computa-
tional complexity. This observation agrees with
a recent analysis of Xu and Choi (2020). Sec-
ond, we also apply a simple heuristic rule based
on the entity linking results to refine the predic-
tions of the neural models. We prevent two entity
mentions from being merged together if they are
linked to different entities with high confidence.
For English, we use SpanBERT (large) (Joshi
et al., 2020) as the Transformer encoder and train
the system on ACE 2005 (Walker et al., 2006),
EDL 20162, EDL 20173, and OntoNotes (English)
(Pradhan et al., 2012). For Spanish, we use XLM-
Roberta (large) (Conneau et al., 2020) and train the
system on OntoNotes (Spanish) (Pradhan et al.,
2012), DCEP (Dias, 2016), and SemEval 2010
(Recasens et al., 2010).

2.7 Event Coreference Resolution
For Russian event coreference resolution, we fol-
low the approach of Li et al. (2019). For English
and Spanish, we implement a single cross-lingual
model that incorporates a wide range of symbolic
features into event coreference resolution. Given
an input document D consisting of n tokens, our
model first forms a contextualized representation
for each input token, using the multilingual
XLM-RoBERTa (XLM-R) Transformer model
(Conneau et al., 2020). Let X = (x1, ..., xn) be the
output of the Transformer encoder, where xi ∈ Rd.

Single-Mention Encoder For each (predicted)
event mention mi, its trigger’s representation ti is
defined as the average of its token embeddings:

ti =
ei∑

j=si

xj
ei − si + 1

(3)

2LDC2017E03
3LDC2017E52

https://spacy.io/


We assume that each mi has K different sym-
bolic features associated with it (e.g., its predicted
event type and attributes). Using K trainable em-
bedding matrices, we convert the symbolic fea-
tures of mi into K vectors {h(1)

i ,h(2)
i , . . . ,h(K)

i },
where h(u)

i ∈ Rl.

Mention-Pair Encoder Given two event men-
tionsmi andmj , we define their trigger-based pair
representation as:

tij = FFNNt
([

ti, tj , ti ◦ tj
])

(4)

where FFNNt is a feedforward network mapping
from R3×d → Rp, and ◦ is element-wise multipli-
cation. Similarly, we compute their feature-based
pair representations {h(1)

ij ,h
(2)
ij , . . . ,h

(K)
ij } as fol-

lows:

h(u)
ij = FFNNu

([
h(u)
i ,h(u)

j ,h(u)
i ◦ h(u)

j

])
(5)

where u ∈ {1, 2, . . . ,K}, and FFNNu is a feed-
forward network mapping from R3×l → Rp.

Symbolic Features Incorporation In our dock-
erlized GAIA system, we predict the symbolic fea-
tures using simple predictors. As a result, the
symbolic features can be noisy and contain errors.
Also, depending on the specific context, some fea-
tures can be more useful than others. Inspired
by previous studies on gating mechanisms (Lin
et al., 2019; Lai et al., 2019), we propose Context-
Dependent Gated Module (CDGM), which uses
a gating mechanism to extract information from
the input symbolic features selectively. Given two
mentions mi and mj , we use their trigger feature
vector tij as the main controlling context to com-

pute the filtered representation h (u)
ij :

h (u)
ij = CDGM(u)

(
tij ,h

(u)
ij

)
(6)

where u ∈ {1, 2, . . . ,K}. More specifically:

g(u)ij = σ
(
FFNN(u)

g
([

tij ,h
(u)
ij

]))
o(u)ij ,p

(u)
ij = DECOMPOSE

(
tij ,h

(u)
ij

)
h (u)
ij = g(u)ij ◦ o(u)ij +

(
1− g(u)ij

)
◦ p(u)

ij

(7)

where σ denotes sigmoid function. FFNN(u)
g is a

mapping from R2×p → Rp. At a high level, h(u)
ij

is decomposed into an orthogonal component and
a parallel component, and h (u)

ij is simply the fu-
sion of these two components. In order to find the

optimal mixture, gij is used to control the compo-
sition. The decomposition unit is defined as:

Parallel p(u)
ij =

h(u)
ij · tij
tij · tij

tij

Orthogonal o(u)ij = h(u)
ij − p(u)

ij

(8)

where · denotes dot product. The parallel compo-
nent p(u)

ij is the projection of h(u)
ij on tij . It can be

viewed as containing information that is already
part of tij . o(u)ij is orthogonal to tij , and so it can
be viewed as containing new information.

Mention-Pair Scorer After using CDGMs to
distill symbolic features, the final pair representa-
tion fij of mi and mj can be computed as follows:

fij = [tij ,h
(1)
ij ,h

(2)
ij , . . . ,h

(K)
ij ] (9)

And the coreference score s(i, j) of mi and mj is:

s(i, j) = FFNNa(fij) (10)

where FFNNa is a mapping from R(K+1)×p → R.

Noisy Training We use the same loss function
as in (Lee et al., 2017). We also notice that
the training accuracy of a feature predictor is
typically near perfect. Therefore, if we simply
train our model without any regularization, our
CDGMs will rarely come across noisy symbolic
features during training. Therefore, to encourage
our CDGMs to actually learn to distill reliable sig-
nals, we also propose a simple but effective noisy
training method. Before passing a training data
batch to the model, we randomly add noise to
the predicted features. More specifically, for each
document D in the batch, we go through every
symbolic feature of every event mention in D and
consider sampling a new value for the feature.

Training Datasets For English, we train the sys-
tem on ACE 2005 (Walker et al., 2006) and KBP
2016 (Mitamura et al., 2016). For Spanish, we
train the system on ERE-ES (Song et al., 2015).

2.8 Temporal Attribute Extraction
For English documents, we first use Stanford
CoreNLP (Manning et al., 2014) to perform time
expression extraction and normalization for all
documents. Then we perform sentence-level time
argument extraction. Specifically, we fine-tuned
BERT on ACE 2005 event time argument annota-
tions. We use the representation of the first token



of an event span and a time span to perform pair-
wise classification.

We further propagate local event time
to document-level using graph attention
networks (Velickovic et al., 2018). We
construct document-level event graphs as
G = {(ei, vj , ri,j)}, where each bi-directed edge
ri,j represents the argument role between an event
ei and an entity or time expression vj . We first
obtain token representation from BERT for all
sentences in a document. Then we use the average
representation for event triggers, entities and time
expressions that contains multiple tokens. To
propagate information from connected nodes,
we use a two-layer graph attention networks
that will update the representations for events,
entities and time expressions. We use a two-layer
feed-forward networks to estimate the probability
to fill time expression tj in event ei’s 4-tuple
time elements. To resolve conflict, we use a
greedy approach that choose 4-tuple element
candidates based on the descending order of their
probabilities, and fill in the time if there is no
conflict, otherwise we drop the candidate.

For English relations, Spanish and Russian
events and relations, we use the document creation
time as the latest start time and earliest end time.

3 TA1 Explicit/Implicit Relation
Extraction

We employ a separate component to handle the ex-
traction of relations in the AIDA ontology whose
expression is more diverse than standard onto-
logical relations like father − of . These rela-
tions are sponsorship, blame, deliberateness, le-
gitimacy, hoax-fraud, and sentiment. Extracting
these types is extremely challenging as 1) they are
data scarce (there are few, if any, gold label ex-
amples) and 2) they can be expressed both explic-
itly, using identifiable trigger words, and implic-
itly. For example, the blame relation is clear in
both “Maduro blamed the protestors for the attack
and “Maduro had the protestors arrested for the at-
tack” but in the latter it must be inferred. As such,
we deploy an ensemble of few-shot techniques for
explicit and implicit information extraction.

3.1 Explicit Relation Scoring

To extract explicit relations, we incorporate
our work on few-shot neural relation extraction
(Ananthram et al., 2020). It builds on the current

start-of-the-art, “Matching the Blanks” (MTB)
(Soares et al., 2019) which extends Harris’ dis-
tributional hypothesis (Harris, 1954) to relations.
Soares et al. assume that the informational redun-
dancy of very large text corpora (e.g., Wikipedia)
results in sentences that contain the same pair
of entities generally expressing the same relation.
Thus, an encoder trained to collocate such sen-
tences can be used to identify the relation between
entities in any sentence s by finding the labeled
relation example whose embedding is closest to s.

While MTB is very successful, it relies on a
huge amount of data, making it difficult to retrain
in English or any other language with standard
computational resources. To address this chal-
lenge, we assume that sections of news corpora
exhibit even more informational redundancy than
Wikipedia. Specifically, news in the days follow-
ing an event (e.g., the 2006 World Cup) frequently
re-summarizes the event before adding new de-
tails. As a result, news exhibits a strong form of
local consistency over short rolling time windows
where otherwise fluid relations between entities
remain fixed. For example, the relation between
Italy and France as expressed in a random piece of
text is dynamic and context-dependent, spanning a
wide range of possibilities that include “enemies”,
“neighbors” and “allies”. But, in the news cover-
age following the 2006 World Cup, it is static –
they are sporting competitors. Therefore, by con-
sidering only sentences around specific events, we
extract groups of statements that express the same
relation and are relatively free of noise.

Using this method, we extract a distantly su-
pervised training corpus in English, Spanish and
Russian from the Reuters RCV1 and RCV2
newswire corpora (Lewis et al., 2004) guided by
date-marked event descriptions from Wikipedia.
We use this corpus to train multilingual BERT
(Devlin et al., 2018) to produce high quality
general-purpose relation representations from re-
lation statements. We adopt the common defini-
tion of a relation statement in the literature: a triple
r = (x, s1, s2) where x = [x0 ... xn] is a sequence
of tokens and s1 = (i, j) and s2 = (k, l) are the in-
dices of special start and end identifier tokens that
demarcate the two entity mentions in x. mBERT
maps this relation statement to a fixed-length vec-
tor h ∈ Rd. The vector h represents the relation
between the entity mentions identified by s1 and
s2 as expressed in x. The cosine similarity be-



tween f(r) and f(rO) should be close to 1 if and
only if r and rO express the same relation. That
is to say, mBERT should collocate sentences that
exhibit similar relations.

To incorporate this work into the AIDA
pipeline, we rely on the entity and event extrac-
tions from earlier components to produce candi-
date relation statements for the AIDA corpus. We
compare each candidate to the gold labeled exem-
plars for each relation provided by LDC, produc-
ing similarity scores for each candidate / relation
exemplar pair between 0 and 1. These scores are
then considered by our final aggregation step when
deciding whether or not to accept a particular can-
didate relation statement.

3.2 Implicit Relation Scoring

To identify implicit relations, we augment rela-
tion candidates with stance (pro, con and neutral)
scores meant to capture the valence towards a par-
ticular entity or event whose expression may be
subtle. This information provides useful signal
for the identification of relations that have intrin-
sic positive or negative connotations. For example,
sentences that blame an individual for an event of-
ten take a negative position towards that individual
that can only be inferred implicitly (e.g., “Maduro
blamed outside agitators for the attack”).

To produce these scores, we incorporate our
work on zero-shot stance detection (Allaway and
McKeown, 2020). In that work, we present a new
dataset for the challenging task of generalizable
stance detection on unseen topics. This corpus
captures a wider range of topics and lexical varia-
tion than in previous datasets. Using this dataset,
we design and train a new model for stance de-
tection that captures relationships between topics
without supervision and beats the state-of-the-art
on a number of challenging linguistic phenomena.

This new model, Topic-Grouped Attention
(TGA) Net, consists of 1) a BERT-based contex-
tual conditional encoding layer, 2) topic-grouped
attention using generalized topics representations
and 3) a feed-forward neural network (see Figure
3). Given a sentence s and a topic t, the contextual
conditional encoding layer first embeds the pair
using BERT (Devlin et al., 2018), resulting in se-
quences of token embeddings for the sentence s
and for the topic t. We use a concatenation of tf-
idf weighted averages of the embeddings of s and
t to find the closest cluster in a hierarchical clus-

Figure 3: Architecture of TGA Net. Enc indicates
contextual conditional encoding, GTR indicates Gen-
eralized Topics Representation, TGA indicates Topic-
grouped Attention

tering of sentences and topics from our training
data and treat its centroid as our generalized topic
representation r. Using r, we compute the simi-
larity between t and all topics seen during training
via learned scaled dot-product attention (Vaswani
et al., 2017) and use these similarity scores to pro-
duce a weighted average of our topic tokens c
that captures the relationship between t and related
topics and documents. Finally, we concatenate our
embeddings of s and t with c and pass it through
several feed-forward layers to produce a probabil-
ity distribution over our three stance labels: pro,
con and neutral.

To incorporate this work into the AIDA
pipeline, we augment every relation candidate
with the stance score towards each entity or event
in the relation statement. As with our explicit rela-
tion scores, these scores are considered by our fi-
nal aggregation step when deciding whether or not
to accept a particular candidate relation statement.

3.3 Aggregating Scores

In addition to our new explicit and implicit re-
lation scoring components, we augment our can-
didate relation statements with trigger-based and
sentiment-based scores from our existing system,
presented as part of (Li et al., 2019). We use
highly regularized decision trees trained on dozens
of examples from AIDA practice corpora which
we manually annotated to make the ultimate ac-
ceptance decision based on these scores.

3.4 Event Source Information

Finally, to enable better perspective clustering dur-
ing TA3 hypothesis generation, we adapt our ex-
plicit relation extraction system to identify the



source of all event information along with a con-
fidence score. For example, in the sentence
“Maduro says the protests seeking to oust him
are backed by the United States.”, we identify
“Maduro” as the source of extracted Protest event.

4 TA1 Visual Knowledge Extraction

We first review our Visual Knowledge Extraction
(VKE) system (Li et al., 2019) last year and intro-
duce our new component from our current system.
Our system further combines information from
multimodal sources at the entity level (grounding)
and at the event level (event-type, argument roles),
which serves multimodal information from differ-
ent modalities as complementary to each other.

4.1 Entity Detection

The object detection system contains four different
systems: three Faster R-CNN (Ren et al., 2015)
models and a weakly supervised CAM model
(Zhou et al., 2016). We followed the same pro-
cess (Li et al., 2019) to aggregate the results from
a different model and created a new mapping for
the classes to the new m36 ontology. For face de-
tection, we use an MTCNN model (Zhang et al.,
2016). For the overlapped detection between the
general object model and face model, we create a
cluster using the object detection result with the
largest bounding box as the prototype to represent
the detected result.

4.2 Entity Recognition

The entity recognition pipeline is done by face
recognition models FaceNet (Schroff et al., 2015)
where we recognize predefined name list recog-
nized by the text named-entity recognition model.
We covered around 500 names in our current sys-
tem.

4.3 Cross-Modal Entity Coreference

The entity coreference pipeline aims to build
a knowledge graph by linking detected entities
by our entity detection component. Our entity
coreference model has two components: single-
modality and cross-modality. The single-modality
component finds entities that co-occur in multi-
ple images within the same root document. The
cross-modality component links the entity ex-
tracted from the text model to the entities in the
images. This year, the cross-modal coreference
model links entity-level information (object from

images and entities from the text) and is used to
discover event-level information.

We followed our previous visual grounding sys-
tem (Zhang et al., 2018) which extracts a multi-
level visual feature map for each image in a doc-
ument. For each word (or phrase, entity mention,
etc.), we compute an attention map to every fea-
ture map location to localize the query by com-
puting the similarity between the word and region.
On the other hand, our network takes each sen-
tence of the document and represents each word
using a language model. We calculate the sentence
to image similarity score using all pairs in the doc-
ument to find potential co-referenced events across
modality. Details will be described in the later sec-
tion.

4.4 Event and argument role extraction
Besides extracting entity information from images
and videos, we also extract visual events and their
argument roles from visual data. To train our
system, we have collected a dataset called video
M2E2, which contains 4.5K video-article pairs
from YouTube news channels. We start from 20
event types defined in AIDA ontology, which is vi-
sually detectable and search on news channels. In
the end, we annotated 1.2K video article pairs for
training and evaluation. Given the annotation, we
have developed several models on top of this data.
First, we have trained an image-based model using
Joint Situation Localizer (JSL (Pratt et al., 2020)).
We combine the annotation of video M2E2 and the
Swig (Pratt et al., 2020) data and map the event
types and argument roles to the AIDA ontology.
In this setting, the model can detect argument roles
that were not defined in the Swig data, such as vi-
sual display in the protest event.

4.5 Multimodal event coreference
We further extended this model to find event coref-
erence between image and text events. For the im-
ages with detected events, we apply our previous
grounding model to find sentences within the same
root document with high image-sentence similar-
ity, representing the sentence content similar to the
image content. Also, we find the event mention
in the sentence extracted by the text event extrac-
tion tool. We apply a rule-based approach to deter-
mine if the image event and the event mention in
the sentence have a coreference relation. (1) The
event type of the event mention in the sentence
has the same event type extracted in the image.



(2) The image and sentence have a high similar-
ity score. (3) No contradiction in the entity types
for the same argument role across different modal-
ities. If all three criteria are valid, we determine
that the two events from different modalities have
a coreference relation. This pipeline allows us to
find 36% of visual events contain additional argu-
ments not mentioned in the text, with 98 additional
arguments detected. For the event detection per-
formance, visual events had a precision of 60%,
and visual events with coreference had a precision
of 82%. So the step of co-referencing with text
events serves as a useful filtering step to further
enhance visual event detection accuracy.

5 TA2 Cross-Document Coreference

Our TA2 focuses on generating high precision
clusters of entities across documents since the in-
coming data includes noisy extractions and has
missing information. For the named entity, each
entity contains limited labels and pre-linked ex-
ternal knowledge base identifiers with confidence.
The simple but effective clustering algorithm maps
all entities with identifiers to Wikidata and ini-
tializes clusters with knowledge base identifiers.
The labels of these clusters get enriched from
Wikidata’s multilingual label, aliases and descrip-
tions. Each cluster then computes several trusted
labels for attracting other entities without knowl-
edge base identifiers and these newly merged en-
tities must have compatible types with the cluster
type. For the rest of the entities, they form single-
ton clusters and get merged based on the similarity
of labels. Finally, a prototype is elected from all
entities within each cluster to represent the whole
cluster based on its extraction confidence and label
prevalence in the cluster. To deal with the large in-
put triples in AIDA Interchangeable Format, we
uses KGTK 4 which is a flexible and low-resource
required python library for knowledge graph ma-
nipulation in TSV intermediate format.

6 HypoGator: Alternative Hypotheses
Generation and Ranking

HypoGator is the hypothesis Generation system
developed by the University of Florida. With a
search-rank-cluster approach, it finds alternative
perspectives to complex topics(queries) over the
automatically extracted knowledge graph by TA1

4https://github.com/usc-isi-i2/kgtk

and TA2. Briefly speaking, HypoGator decom-
poses a complex graph query into subqueries of
simple subgraph patterns. For each subquery its
entry points are matched into the inferred input
knowledge graph and their local context gener-
ates candidate answers. Candidates are scored
and ranked using multiple features that are indica-
tive of coherence and relevance. A join algorithm
combines the answers from each atomic query and
re-scores the final set of answers using features
that encourage answer cohesion. Finally, a newly
developed hypotheses clustering algorithm is ap-
plied to select out the alternative hypotheses based
on both structural and semantic features. Figure 4.
Details of the core components are covered in the
following subsections.

6.1 Query Processing

A statement of information need(SIN) is a sub-
graph pattern with event/relation types and en-
tities as nodes, event/relation argument roles as
edges and a set of grounded entities known as
entry points. We classify an SIN as simple if
each entry points is used as the argument of
only one event/relation. In contrast, a complex
SIN has entry points that are shared by multiple
events/relations developing into a star-like struc-
ture. HypoGator’s query processing module first
scan an SIN and decomposes a complex SIN into
multiple simple SINs that we refer to as atomic.
The decomposition algorithm first finds all con-
nected components in the SIN and for each com-
ponent, the algorithm visits the neighbors of its en-
try points and traverse each of them until a differ-
ent entry point or a terminal node is found. The
resulting subgraphs are added to the atomic query
list. Figure 5 shows an example SIN with entry
points Odessa (a.k.a. Odesa) and Trade Unions
House (a.k.a. Trade Unions Building) in the cen-
ter and atomic queries derived from it using the
decomposition algorithm round it.

After query decomposition, HypoGator
matches entry points into the inferred knowledge
graph. Since it is common to see that the informa-
tion of entities in the given KG are incomplete,
HypoGator will try to use all the available entry
point information given by the SIN for matching
separately, including the background KB id,
the provenance offset and the strings of all the
names/alias of an entry point. When doing string
matching, common string similarity metrics and



Figure 4: HypoGator System Architecture

an adaptive threshold strategy are used. By
dropping the duplicated entity mention nodes, we
get the final seed entity set of the KG.

6.2 Query-driven Knowledge Graph
inference

Planned Objective: The goal is to enrich the TA2
KG in a targeted and computationally efficient
manner to support coherence of a generated hy-
pothesis.

Current Status: General inference approaches
over larger knowledge graphs require heavy com-
putational cost, this The cost is two-folds: 1)
when performing inference over the whole KG,
and 2) an after effect where the reset of the sys-
tem needs to process the even larger KG+inferred
edges. Thus we propose using the query for tar-
geted inference on only relevant subgraphs. We
experimented with both relation based and event-
role based inference. In relation based infer-
ence, we limit to the relations that appear in the
query (statement of information need) and fil-
ter candidate entities/fillers based on constraints
in the query, e.g., entity type, entity string, etc.
To enrich the TA2 KG with new relations, we
employ a simple entity-partitioning and relation-
scoring algorithm based on the character offsets
and query constraints. To enrich event-role argu-
ments, we filter TA1 subgraphs (documents) that
include the entry points and find missing roles for
every event by cross-checking the ontology. Fi-
nally we use event-type based handcrafted features
(e.g., char-offset, is-entry-point, is-same-type-as-
missing, string-similarity, etc.) to infer missing
roles. Initial results show a significant improve-
ment in recall over queries that we couldn’t mine

any hypothesis and an overall boost in recall for
other queries.

with using single document lineage compared
with multi-document lineage on different datasets.
The result is a trade off of completeness and coher-
ence: in M18 data single lineage generate more
coherent hypotheses, in M36 preliminary results,
single lineage generate very small and incom-
plete hypotheses. We experimented with docu-
ment clustering to identify documents with sim-
ilar perspectives - this generates negative results.
We also worked with GAIA TA1 team to extract
source of information at the document level and at
the event extraction level. Currently, we are able to
leverage the lineage of the source to cluster docu-
ment, however, we are not able to leverage source
at the extraction level due to two reasons: 1) it
was not included in the M36 eval TA2; 2) it is not
clear not to generate composite hypotheses using
lineage at extraction level in TA3 pipeline. We will
look into these challenges when we have the data
ready from TA2.

6.3 Candidate Hypothesis Generation

HypoGator uses a novel two-level graph search
method to generate relevant atomic hypothesis for
an atomic query. Firstly, it explores the one-hop
neighborhood of the seed entities at the mention
level in the knowledge graph, searching for event
nodes which are coherent with the given event type
in the corresponding atomic query. In the mean-
while, all the argument nodes around each visited
coherent event node will also be included. Ev-
ery coherent event node and its argument nodes
including the seed entity serve as the backbone
structure for a candidate atomic hypothesis. Then



Figure 5: Query Decomposition

based on those mention level event-centric sub-
graphs, we continue searching for coherent rela-
tions starting from each entity around the event
at the cluster level. Figure 6 gives an example
of atomic hypothesis generated after the two-level
graph search and context enrichment which will
be introduced later.

The entity cluster information provided by TA2
increases the connectivity of the mention level
graph extracted by the TA1, hence, it make us able
to find more coherent information through graph
searching.

6.4 Ranking and Selection
Our candidate generation module ensures that the
generated candidate hypothesis include the entry
points. However, this does not guarantee them to
be fully relevant to the query at hand. Moreover,
the candidates need to be pruned if they are not
logically or semantically coherent. Another im-
portant factor determining the quality of a candi-
date hypothesis is the validity confidence of each
of its knowledge elements, whether they are from
the document sources (extraction confidence) or
inferred (inference confidence) or TA2 clustering.

We use a variety of features to measure each hy-
pothesis’s semantic coherence, logical coherence,
and degree of relevance to the query. We use
an aggregation method to obtain an overall con-
fidence score from each knowledge elements con-

fidence. For example we use an ensemble of graph
distance functions to measure the query relevance
or use a set of predefined logical rules to detect
logical inconsistency. The overall score for each
hypothesis is computed as a linear combination
of the individual scores from each of the features.
We use the LDC labeled data to learn appropriate
weights for each feature or use reasonable hand-
crafted weights for each feature.

While we have multiple features and each of
them scores the hypothesis for some important
consistency or coherence property, we need a con-
dense score that can be used to give full quantita-
tive significance to a hypothesis and therefore use
it for ranking candidates. We use a simple ap-
proach to aggregate different scores, a weighted
sum of the feature values. We manually select the
weights with what we believe are more salient fea-
tures of a hypothesis. We look forward to include
a learned version of the weights.

6.5 Hypotheses Clustering
Due to the nature of AIDA’s data e.g. multiple
documents about the same hypothesis, it is possi-
ble to generate many candidate hypotheses repre-
senting the same perspective with different level of
details to a given SIN. Our system uses subgraph
clustering to mining out the salient alternative per-
spectives from the huge number of candidate hy-
potheses in which full of duplication and conflicts.



Figure 6: Example Atomic Hypothesis: the triangles in the above graph refers to event/relation nodes, the circles
are entity nodes. All the purple and light blue nodes are mention level nodes, the grey circle is a entity cluster node
which refers to a bunch of entity mentions(of ’PER.Fan.SportsFan’ in this case) across multiple documents.

Table 1: Evaluation result of hypotheses clustering al-
gorithms

METRICS/MOTHEDS OLD-M18 GED-BASED(NEW)

HOMOGENEITY 0.725 0.916 (26.3(%))
COMPLETENESS 0.729 0.847 (16.2(%)
Vmeasure 0.727 0.880 (21(%))
SILHOUETTE 0.509 0.580 (14(%))
F1(REPRESENTATIVES) 0.6 0.75 (25(%))

We designed and tested five new spectral clus-
tering based subgraph clustering algorithms with
different similarity functions which is used to
compute a similarity score for each pair of gener-
ated hypothesis subgraphs. To compare and eval-
uate these different algorithms, we manually la-
beled our own dataset using the subgraphs ex-
tracted from the LDC knowledge graph in which
contains 54 automatically generated candidate hy-
pothesis subgraphs and 20 manually labels clus-
ters. Among all these new developed methods, the
customized graph edit distance(GED) based one
performs the best. Table 1 shows the improve-
ment of the new GED-based method comparing to
the old sting-similarity based method.
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