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Abstract

Grounding events into a precise timeline is im-
portant for natural language understanding but
has received limited attention in recent work.
This problem is challenging due to the inher-
ent ambiguity of language and the requirement
for information propagation over inter-related
events. This paper first formulates this prob-
lem based on a 4-tuple temporal representa-
tion used in entity slot filling, which allows
us to represent fuzzy time spans more con-
veniently. We then propose a graph atten-
tion network-based approach to propagate tem-
poral information over document-level event
graphs constructed by shared entity arguments
and temporal relations. To better evaluate
our approach, we present a challenging new
benchmark, where more than 78% of events
do not have time spans mentioned explicitly
in their local contexts. The proposed ap-
proach yields an absolute gain of 7.0% in
match rate over contextualized embedding ap-
proaches, and 16.3% higher match rate com-
pared to sentence-level manual event time ar-
gument annotation.1

1 Introduction

Understanding and reasoning about time is a cru-
cial component for comprehensive understanding
of evolving situations, events, trends and forecast-
ing event abstractions for the long-term. Event time
extraction is also useful for many downstream Nat-
ural Language Processing (NLP) applications such
as event timeline generation (Huang and Huang,
2013; Wang et al., 2015; Ge et al., 2015; Steen
and Markert, 2019), temporal event tracking and
prediction (Ji et al., 2009; Minard et al., 2015), and
temporal question answering (Llorens et al., 2015;
Meng et al., 2017).

*Work done prior to joining Amazon.
1The resource for this paper is available at https://gi

thub.com/wenhycs/NAACL2021-Event-Time-Ex
traction-and-Propagation-via-Graph-Atten
tion-Networks.

In order to ground events into a timeline we need
to determine the start time and end time of each
event as precisely as possible (Reimers et al., 2016).
However, the start and end time of an event is often
not explicitly expressed in a document. For exam-
ple, among 5,271 annotated event mentions in the
Automatic Content Extraction (ACE2005) corpus2,
only 1,100 of them have explicit time argument
annotations. To solve the temporal event ground-
ing (TEG) problem, previous efforts focus on its
subtasks such as temporal event ordering (Bram-
sen et al., 2006; Chambers and Jurafsky, 2008;
Yoshikawa et al., 2009; Do et al., 2012; Meng et al.,
2017; Meng and Rumshisky, 2018; Ning et al.,
2017, 2018, 2019; Han et al., 2019) and duration
prediction (Pan et al., 2006, 2011; Vempala et al.,
2018; Gusev et al., 2011; Vashishtha et al., 2019;
Zhou et al., 2019). In this paper we aim to solve
TEG directly using the following novel approaches.

To capture fuzzy time spans expressed in text, we
adopt a 4-tuple temporal representation proposed
in the TAC-KBP temporal slot filling task (Ji et al.,
2011, 2013) to predict an event’s earliest possible
start date, latest possible start date, earliest possible
end date and latest possible end date, given the
entire document. We choose to work at the day-
level and leave time scales smaller than that for
future work since, for example, only 0.6% of the
time expressions in the newswire documents in
ACE contain smaller granularities (e.g., hours or
minutes).

Fortunately, the uncertain time boundaries of an
event can often be inferred from its related events
in the global context of a document. For example,
in Table 1, there are no explicit time expressions
or clear linguistic clues in the local context to in-
fer the time of the appeal event. But the earliest
possible date of the refuse event is explicitly ex-
pressed as 2003-04-18. Since the appeal event
must happen before the refuse event, we can infer

2https://catalog.ldc.upenn.edu/LDC2006T06
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Malaysia’ s Appeal Court Friday[2003-04-18] refused to overturn the conviction and nine-year jail sentence imposed on ex-deputy
prime minister Anwar Ibrahim. Anwar now faces an earliest possible release date of April 14, 2009[2009-04-14]. The former heir
says he was framed for political reasons, after his appeal was rejected ... Mahathir’s sacking of Anwar in September 1998[1998-09]
rocked Malaysian politics ... Within weeks he was arrested and charged with ... Anwar was told Monday[2003-04-14] that he had
been granted a standard one-third remission of a six-year corruption sentence for good behavior, and immediately began to serve
the nine-year sentence ...

Event Earliest
Start Date

Latest
Start Date

Earliest
End Date

Latest End
Date

Evidence

Local
Context

sentence 2003-04-14 2003-04-14 -inf +inf
appeal -inf +inf -inf +inf

+ Sharing
Arguments

sentence 2003-04-14 2003-04-14 2009-04-14 +inf release→Anwar→sentence
appeal -inf +inf 2003-04-18 2003-04-18 refuse→Anwar→appeal

+ Temporal
Relation

sentence 2003-04-14 2003-04-14 2009-04-14 +inf
appeal 1998-09-01 +inf 2003-04-18 2003-04-18 sack→arrest→appeal

Table 1: Examples of temporal propagation via related events for two target events, sentence and appeal. By
leveraging related events with temporal relations and shared arguments, some infinite dates can be refined with
temporal boundaries. Note: The event triggers that we are focusing are highlighted in orange, time expressions in
blue, and normalized TIMEX dates in subscripts. Related events are underlined.

the earliest start and the latest end date of appeal
as 2003-04-18. However, there are usually many
other irrelevant events that are in the same docu-
ment, which requires us to develop an effective
approach to select related events and perform tem-
poral information propagation. We first use event-
event relations to construct a document-level event
graph for each input document, as illustrated in
Figure 1. We leverage two types of event-event
relations: (1) if two events share the same entity
as their arguments, then they are implicitly con-
nected; (2) automatic event-event temporal relation
extraction methods such as (Ning et al., 2019) pro-
vide important clues about which element in the
4-tuple of an event can be propagated to which 4-
tuple element of another event. We propose a novel
time-aware graph propagation framework based on
graph attention networks (GAT, Velickovic et al.,
2018) to propagate temporal information across
events in the constructed event graphs.

Experimental results on a benchmark, newly
created on top of ACE2005 annotations, show
that our proposed cross-event time propagation
framework significantly outperforms state-of-the-
art event time extraction methods using contextual-
ized embedding features.
Our contributions can be summarized as follows.

• This is the first work taking advantage of the
flexibility of 4-tuple representation to formulate
absolute event timeline construction.
• We propose a GAT based approach for time-

line construction which effectively propagates
temporal information over document-level event
graphs without solving large constrained opti-
mization problems (e.g., Integer Linear Program-

ming (ILP)) as previous work did. We propose
two effective methods to construct the event
graphs, based on shared arguments and temporal
relations, which allow the time information to be
propagated across the entire document.
• We build a new benchmark with over 6,000 hu-

man annotated non-infinite time elements, which
implements the 4-tuple representation for the
first time as a timeline dataset, and is intended to
be used for future research on absolute timeline
construction.

2 A New Benchmark

2.1 4-tuple Event Time Representation

Grounding events into a timeline necessitates the
extraction of the start and end time of each event.
However, the start and end time of most events is
not explicitly expressed in a document. To capture
such uncertainty, we adopt the 4-tuple represen-
tation introduced by the TAC-KBP2011 temporal
slot filling task (Ji et al., 2011, 2013). We define 4-
tuple event time as four time elements for an event
e→ 〈τ−start, τ

+
start, τ

−
end, τ

+
end〉,3 which indicate earli-

est possible start date, latest possible start date,
earliest possible end date and latest possible end
date, respectively. These four dates follow hard
constraints:{

τ−start ≤ τ+start

τ−end ≤ τ
+
end

,

{
τ−start ≤ τ−end

τ+start ≤ τ+end

. (1)

3We use subscripts “start” and “end” to denote start and
end time, and superscripts “−” and “+” to represent earliest
and latest possible values.



The enemy have now been flown out and we’re treating them including a man who is almost dead with a gunshot wound to the
chest after we (Royal Marines) sent in one of our companies of about 100 men in here (Umm Kiou) this morning.

sent
Movement:Transport

Agent

Royal Marines

this morning
(2003-03-29)

Umm Kiou

Destination

company

Artifact

gunshot
Conflict:Attack

Attacker

man

Target
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Figure 1: The example event graph. The graph with solid lines is constructed from event arguments. The graph
with dash lines is constructed from temporal relations. Entities in the text are underlined and events in the text are
in boldface.

Category #
# documents 182

usenet 1
broadcast conversations 5
broadcast news 63
webblogs 26
newswire 87

# train/dev/test 92/39/51
# event mentions 2,084
# average tokens/document 436
# non-infinite elements 6,058
# infinite elements 2,278

Table 2: Data Statistics

The above temporal representation was originally
designed for entity slot filling, and we regard it
as an expressive way for describing events too as:
(1) it allows for flexible representation of fuzzy
time spans and thus, for those events that we can-
not determine the accurate dates, they can also be
grounded into a timeline; and (2) it allows for a
unified treatment of various types of temporal infor-
mation and thus makes it convenient to propagate
over multiple events.

2.2 Annotation
We choose the Automatic Content Extraction
(ACE) 2005 dataset because it includes rich anno-
tations of event types, entity/time/value argument
roles, time expressions and their normalization re-
sults. In our annotation interface, each document
is highlighted with event triggers and time expres-
sions. The annotators are required to read the whole
document and provide as precise information as
possible for each element of the 4-tuple of each
event. If there is no possible information for a
specific time, the annotators are asked to provide
+/-infinite labels.

Symbol Explanation
wi the i-th word of document D
D a document, D = [w1, . . . , wn]
ei an event trigger in D
E the event mention set of D, E =

{e1, . . . , em}
τi a time element of event i, can be

{τ−i,start, τ
+
i,start, τ

−
i,end, τ

+
i,end}

ti a time expression in D
T the time set of D, T = {t1, . . . , tl}
ri a relation, either event argument roles or

event temporal relations
R relation set, R = {r1, . . . , rq}

Table 3: Notations

Overall, we have annotated 182 documents from
this dataset. Most of the documents are from broad-
cast news or newswire genres. Detailed data statis-
tics and data splits are shown in Table 2. We an-
notated all the documents with two independent
passes. Two experts led the final adjudication based
on independent annotations and discussions with
annotators since single annotation pass is likely to
miss important clues, especially when the event and
its associated time expression appear in different
paragraphs.

3 Approach

3.1 Overview

The input is a document D = [w1, . . . , wn], con-
taining event triggers E = [e1, . . . , em] and time
expressions T = [t1, . . . , tl], and we use gold-
standard annotation for event triggers and time ex-
pressions. Our goal is to connect the event triggers
E and time expressions T scattered in a document,
and estimate their association scores to select the
most possible values for the 4-tuple elements. At a



high-level, our approach is composed of: (1) a text
encoder to capture semantic and narrative informa-
tion in local context, (2) a document-level event
graph to facilitate global knowledge, (3) a graph-
based time propagation model to propagate time
along event-event relations, and (4) an extraction
algorithm to generate 4-tuple output. Among these
four components, (1) and (4) build up the minimal
requirements of an extractor, which serve as our
baseline model and will be described in Section 3.2.
We will detail how we utilize event arguments and
temporal ordering to construct the document-level
event graph, namely component (2), in Section 3.3.
We will present our graph-based time propagation
model in Section 3.4, and wrap up our model with
training objective and other details in Section 3.5.

We list notations in Table 3, which will be ex-
plained when encountered.

3.2 Baseline Extraction Model

Our baseline extraction model is an event-time pair
classifier based on a pre-trained language model
(Devlin et al., 2019; Liu et al., 2019; Beltagy et al.,
2020) encoder. The pre-trained language models
allow us to have contextualized representation for
every token in a given text. We directly derive
the local representation for event triggers and time
expressions from the contextualized representation.
The representations are denoted as hei for event
trigger ei and htj for time expression tj . For events
or time expressions containing multiple tokens, we
take the average of token representations. Thus, all
hei and htj are of the same dimensions.

We pair each event and time in the document,
i.e., {(ei, tj) | ei ∈ E, tj ∈ T}, to form the
training examples. After obtaining event and
time representations, we concatenate them and
feed them into a 2-layer feed-forward neural clas-
sifier. The classifier estimates the probability
of filling tj in ei’s 4-tuple time elements, i.e.,
〈τ−i,start, τ

+
i,start, τ

−
i,end, τ

+
i,end〉. The probabilities are:

pi,j,k = σ(w2,kReLU(W 1[hei ;htj ] + b1) + b2,k)
(2)

where σ(·) is sigmoid function, andW 1,2 and b1,2
are learnable parameters. In short, we use τi,k to
represent the kth element in τi (k ∈ {1, 2, 3, 4})
and pi,j,k represents a probability that tj fills in the
kth element of 4-tuple τi. The baseline model con-
sists of 4 binary classifiers, one for each element of
the 4-tuple.

When determining the 4-tuple for each event ei,
we estimate the probability of t1 through tl. For
each element, we take the time expression with
the highest probability to fill in this element. A
practical issue is that the same time is often ex-
pressed by different granularity levels, such as
2020-01-01 and 2020-W1, following the most
common TIMEX format (Ferro et al., 2005). To
uniformly represent all the time expressions and
allow certain degree of uncertainty, we introduce
the following 2-tuple normalized form for time ex-
pressions, which indicates the time range of tj by
two dates,

ti → 〈t−i , t
+
i 〉 (3)

where t−∗ represents the earliest possible dates and
t+∗ represents the latest possible dates.

We also make a simplification that the earliest
possible values can only fill in earliest possible
dates, i.e., T− = {t−1 , . . . , t

−
l } 7→ τ−start, τ

−
end, sim-

ilarly for the latest dates, T+ = {t+1 , . . . , t
+
l } 7→

τ+start, τ
+
end. This constraint can be relaxed in fu-

ture work. Here is an example of how we de-
termine the binary labels for event-time pairs. If
the 4-tuple time for an event is 〈2020-01-01,
2020-01-03, 2020-01-01, 2020-01-07〉
and the 2-tuple for time expression 2020-W1 is
〈2020-01-01, 2020-01-07〉, then the clas-
sification labels of this event-time pair will be
〈True,False,True,True〉.

3.3 Event Graph Construction
Before we conduct the global time propagation, we
first construct document-level event graphs. In this
paper, we focus on two types of event-event rela-
tions: (1) shared entity arguments, and (2) temporal
relations.

Event Argument Graph. Event argument roles
provide local information about events and two
events can be connected via their shared arguments.

We denote the event-argument graph as Garg =
{(ei, vj , ri,j)}, where ei represents an event, vj
represents an entity or a time expression, and ri,j
represents the bi-directed edge between ei and vj ,
namely the argument role. For example, in Figure 1,
there will be two edges between the “sent” event
(e1) and the entity “Royal Marines” (v1), namely
(e1, v1,AGENT) and (v1, e1,AGENT). In addition,
we add a self-loop for each node in this graph. The
graph can be constructed by Information Extrac-
tion (IE) techniques and we use gold-standard event



annotation from ACE 2005 dataset in our experi-
ments.

Event Temporal Graph. Event-event temporal
relations provide explicit directions to propagate
time information. If we know that an attack event
happened before an injury event, the lower-bound
end date of the attack can possibly be the start date
of the injury. We denote the event temporal graph
as Gtemp = {(ei, ej , γi,j)}, where ei and ej denote
events, and γi,j denotes the temporal order between
ei and ej . Similar to Garg, we also add a self-loop
inGtemp and edges for two directions. For example,
for a BEFORE relation from e1 to e2, we will add
two edges, (e1, e2,BEFORE) and (e2, e1,AFTER).
We only consider BEFORE and AFTER relations
when constructing the event temporal graph. To
propagate time information, we also use local time
arguments as in event argument graphs.

We apply the state-of-the-art event temporal rela-
tion extraction model (Ning et al., 2019) to extract
temporal relations for event pairs that appear in the
same sentence or two consecutive sentences, and
we only keep the relations whose confidence score
is over 90%.

3.4 Event Graph-based Time Propagation

After obtaining the document-level graphsGarg and
Gtemp, we design a novel time-aware graph neural
network to perform document-level 4-tuple propa-
gation.

Graph neural networks (Dai et al., 2016;
Kipf and Welling, 2017; Hamilton et al., 2017;
Schlichtkrull et al., 2018; Velickovic et al., 2018)
have shown effective for relational reasoning
(Zhang et al., 2018; Marcheggiani et al., 2018).
We adopt graph attention networks (GAT, Velick-
ovic et al., 2018) to propagate time through event-
argument or event-event relations. GAT are pro-
posed to aggregate and update information for each
node from its neighbors through attention mecha-
nism. Compared to the original GAT, we further
include relational embedding for edge labels when
performing attention to capture various types of
relations between each event and its neighboring
events.

The graphs Garg and Gtemp together with the
GAT model are placed in the intermediate layer of
our baseline extraction model (Section 3.2), i.e., be-
tween the pre-trained language model encoder and
the 2-layer feed-forward neural classifier (Eq. (2)).
For clarity, we denote all events and entities as

nodes V = {v1, . . . , vn}, and we use ri,j to denote
their relation types. More specifically, we stack
several layers of GAT on top of the contextual-
ized representations of nodes hvi . And we follow
Vaswani et al. (2017) to use multi-head attention
for each layer. We use the simplified notation hvi

to describe one of the attention heads for hk
vi .

αij =
exp(aij)∑

k∈N (i) exp(aik)
(4)

h′vi = ELU

 ∑
j∈N (i)

αijW 5hvj

 (5)

where ELU is exponential linear unit (Clevert et al.,
2016), aij is the attention coefficient of node vi and
vj , αij is the attention weight after softmax, and
hvi and h′vi are the hidden states of node vi before
and after one GAT layer, respectively. We useN (i)
to denote the neighborhood of vi. The attention
coefficients are calculated through

aij = σ
(
w4

[
W 3hvi ;W 3hvj ;φri,j

])
(6)

where σ is LeakyReLU (Clevert et al., 2016) ac-
tivation function. φri,j is the learnable relational
embedding for relation type of ri,j that we further
add compared to the original GAT.

We concatenate m different attention heads to
compute the representation of vi for the next layer
after performing attention for each head,

h′vi =
mn

k=1

h
′k
vi . (7)

We stack nl GAT layers to obtain the final repre-
sentations for events and time. These representa-
tions are fed into the 2-layer feed-forward neural
classifier in Eq. (2) to generate the corresponding
probabilities.

3.5 Training Objective
Since we model the 4-tuple extraction task by four
binary classifiers, we adopt the log loss as our
model objective:

L(τi,k, tj) = 1(τi,k = tj) log pi,j,k

+1(τi,k 6= tj) log(1− pi,j,k)
(8)

Since the 4-tuple elements are extracted from
time expressions, the model cannot generate
+/-inf (infinite) output. To address this issue,



we adopt another hyperparameter, inf threshold,
and convert those predicted time values with scores
lower than the threshold into +/-inf values. That
is, we regard the probability pi,j,k also as a con-
fidence score. A low score indicates the model
cannot determine the results for some 4-tuple el-
ements. Thus it is natural to set those elements
as inf. When this case happens in τ−start or τ−end,
we correct the value to be -inf, and when it is
τ+start or τ+end, we set the value to be +inf. This
threshold and its searching will be applied to both
baseline extract and GAT-based extraction systems.
The extraction model may generate 4-tuples that do
not follow the constraints on Eq. (1) and we leave
enforcing the constraints for future work.

4 Experiments

4.1 Data and Experiment Setting
We conduct our experiments on previously intro-
duced annotated data. Statistics of the dataset and
splits are shown in Table 2.

Experiment Setup. We compare our proposed
graph-based time propagation model with the fol-
lowing baselines:

• Local gold-standard time argument: The gold-
standard time argument annotation provides
the upperbound of the performance that a lo-
cal time extraction system can achieve in our
document 4-tuple time extraction task. We
map gold-standard time argument roles to
our 4-tuple representation scheme and report
its performance for comparison. Specifically,
if the argument role indicates the start time
of an event (e.g., TIME-AFTER, TIME-AT-
BEGINNING) we will map the date to τ−start
and τ+start; if the argument role indicates the
end time of an event (e.g., TIME-BEFORE)
we will map the date to τ−end and τ+end; if the
argument role is TIME-WITHIN, we will map
the date to all elements. And we will leave all
other elements as infinite.

• Document creation time: Document creation
time plays an important role in previous ab-
solute timeline construction (Chambers et al.,
2014; Reimers et al., 2018). We build a base-
line that uses document creation time as τ+start
and τ−end for all events.

• Rule-based time propagation: We also build
rule-based time propagation method on top

of local gold-standard time arguments. One
strategy is to set 4-tuple time for all events
that do not have time arguments as document
creation time. Another strategy is to set 4-
tuple time for events that do not have time
arguments as 4-tuple time for their previous
events in context.

• Baseline extraction model: We compare our
model with the baseline extraction model us-
ing contextualized embedding introduced in
Section 3.2. We use two contextualized em-
bedding methods, RoBERTa (Liu et al., 2019)
and Longformer (Beltagy et al., 2020), which
provide sentence-level4 and document-level
contextualized embeddings respectively.

For our proposed graph-based time propagation
model, we use contextualized embedding from
Longformer and consider two types of event graphs:
(1) constructed event arguments, and (2) con-
structed temporal relations and time arguments.

We optimize our model with Adam (Kingma
and Ba, 2015) for up to 500 epochs with a learning
rate of 1e-4. We use dropout with a rate of 0.5
for each layer. The hidden size of two-layer feed-
forward neural networks and GAT heads for all
models is 384. The size of relation embeddings is
50. We use 4 different heads for GAT. The number
of layers nl is 2 for all GAT models. And we use
a fixed pretrained model5 to obtain contextualized
representation for each sentence or document. We
use 10 different random seeds for our experiments
and report the averaged scores. We evaluate our
model at each epoch, and search the best threshold
for infinite dates on the development set. We use
all predicted scores from the development set as
candidate thresholds. We choose the model with
the best performance on accuracy based on the
development set and report the performance on
test set using the best searched threshold on the
development set.

Evaluation Metrics. We evaluate the perfor-
mance of models based on two different met-
rics, exact match rate and approximate match
rate proposed in TAC-KBP2011 temporal slot fill-
ing evaluation (Ji et al., 2011). For exact match

4We use RoBERTa to encode sentences instead of the en-
tire documents because many documents exceed its maximal
input length.

5We use roberta-base and longformer-base-4096 for
RoBERTa and Longformer, respectively.



Model EM AM
Document Creation Time (DCT) 26.90 27.58
Time Argument Annotation 39.21 39.55
Rule-based Time Propagation

DCT as Default 40.63 41.54
From Previous Event 46.20 48.15

Baseline Extraction Model
RoBERTa 45.70* 49.92
Longformer 48.84* 52.41*

Temporal Relation based Propagation
GAT 53.55* 56.60*
GAT w/ relation embedding 55.56* 58.63*

Argument based Propagation
GAT 55.50* 58.79*
GAT w/ relation embedding 55.84 59.18

Table 4: System performance (%) on 4-tuple represen-
tation extraction on test set, averaged over 10 different
runs. All standard deviation values are ≤ 2%. Scores
with standard deviation values ≤ 1% are marked with
*. EM: exact match rate; AM: approximate match rate
(see Eq. (9)).

rate, credits will only be assigned when the ex-
tracted date for a 4-tuple element exactly matches
the ground truth date. The approximate match
rate Q(·) compares the predicted 4-tuple τ̂i =
〈τ̂−i,start, τ̂

+
i,start, τ̂

−
i,end, τ̂

+
i,end〉 with ground truth τi =

〈τ−i,start, τ
+
i,start, τ

−
i,end, τ

+
i,end〉 by the averaged abso-

lute difference between the corresponding dates,

Q(τ̂i, τi) =
1

4

∑
s∈{+,−},
p∈start,end

1

1 + |τ̂ si,p − τ si,p|
. (9)

In this way, partial credits will be assigned
based on how close the extracted date is to the
ground truth. For example, if a gold standard
date is 2001-01-01 and the corresponding ex-
tracted date is 2001-01-02, the credit will
be 1

1+|2001-01-01−2001-01-02| = 1
2 . If a gold

standard date is inf and the corresponding ex-
tracted date is 2001-01-02, the credit will be

1
1+|inf−2001-01-02| = 0.

4.2 Results
Our experiment results are shown in Table 4. From
the results of directly converting sentence-level
time arguments to 4-tuple representation, we can
find that local time information is not sufficient for
our document-level 4-tuple event time extraction.
And the document creation time baseline does not
perform well because a large portion of document-
level 4-tuple event time information does not coin-
cide with document creation time, which is widely
used in previous absolute timeline construction.
By comparing the performance of basic extraction

framework that uses sentence-level and document-
level contextualized embedding, we can also find
that involving document-level information from
embeddings can already improve the system per-
formance. Similarly, we can also see performance
improvement by involving rule-based time propa-
gation rules, which again indicates the importance
of document-level information for this task.

Our GAT based time propagation methods sig-
nificantly outperform those baselines, both when
using temporal relations and when using arguments
to construct those event graphs. Specifically, we
find that using relation embedding significantly im-
proves the temporal relation based propagation, by
2.01% on exact match rate and 2.03% on approxi-
mate match rate. This is because temporal labels
between events, for example, BEFORE and AFTER,
are more informative than argument roles in tasks
related to time. Although our argument-based prop-
agation model does not explicitly resolve conflict,
the violation rate of 4-tuple constraints is about 4%
in the output.

Our time propagation framework has also been
integrated into the state-of-the-art multimedia mul-
tilingual knowledge extraction system GAIA (Li
et al., 2020a,b) for NIST SM-KBP 2020 evaluation
and achieves top performance at intrinsic temporal
evaluation.

4.3 Qualitative Analysis
Table 5 shows some cases of comparison of vari-
ous methods. In the first example, our argument
based time propagation can successfully propagate
“Wednesday”, which is attached to the event “ar-
rive”, to “talk” event, through the shared argument
“Blair”. In the second example, “Negotiation” and
“meeting” share arguments “Washington” and “Py-
ongyang”. So the time information for “Negotia-
tion” can be propagated to “meeting”. In contrast,
for these two cases, the basic extraction framework
extracts wrong dates.

The third example shows the effectiveness of
temporal relation based propagation. We use the
extracted temporal relation that “rumble” happens
before “secured” to propagate time information.
The basic extraction model does not know the tem-
poral relation between these two events and thus
makes mistakes.

4.4 Remaining Challenges
Some temporal boundaries may require knowledge
synthesis of multiple temporal clues in the docu-



... Meanwhile Blair arrived in Washington late Wednesday[2003-03-26] for two days of talks with Bush at the Camp David
presidential retreat. ...
Element: Latest Start Date Baseline Extraction: 2003-03-27 Argument based GAT: 2003-03-26
Propagation Path: Wednesday−→arrive−→Blair−→talks
... Negotiations between Washington and Pyongyang on their nuclear dispute have been set for April 23[2003-04-23] in Beijing
and are widely seen here as a blow to Moscow efforts to stamp authority on the region by organizing such a meeting. ...
Element: Latest Start Date Baseline Extraction: +inf Argument based GAT: 2003-04-23
Propagation Path: April 23−→Negotiations−→Pyongyang−→meeting
... Saturday morning[2003-03-22], American Marines and British troops rumbled along the main road from the Kuwaiti border
to Basra, Highway 80, nicknamed the “Highway of Death” during the 1991 Gulf War , when U. S. airstrikes wiped out an
Iraqi military convoy along it. American units advancing west of Basra have already secured the Rumeila oil field, whose
daily output of 1.3 million barrels makes it Iraq’s most productive. ...
Element: Earliest Start Date Baseline Extraction: 2003-03-21 Temporal based GAT w/ rel: 2003-03-22
Propagation Path: Saturday morning−→rumbled BEFORE−→ secured

Table 5: Comparison of different system outputs. The first two examples demonstrate the effectiveness of argument
based propagation. The third example demonstrates the effectiveness of temporal relation based propagation.

ment. For example, in Table 1, the latest end date
of the “sentence" event (2012-04-14) needs to be
inferred by aggregating two temporal clues in the
document, namely its duration as nine-year, and its
start date as 2003-04-14.

Temporal information for many events, espe-
cially major events, may be incomplete in a single
document. Taking Iraq war as an example, one doc-
ument may mention its start date and another may
mention its end date. To tackle this challenge, we
need to extend document-level extraction to corpus-
level and then aggregate temporal information for
coreferential events in multiple documents.

It is also challenging for the current 4-tuple rep-
resentation to represent temporal information for
recurring events such as paying monthly bills. Cur-
rently we consider recurring events as different
events and fill in slots separately. Besides, this
work does not capture more fine-grained informa-
tion such as hours and minutes, but it is straightfor-
ward to extend the 4-tuple representation to these
time scales in future work.

Our current annotations are done by linguistic
experts and thus they are expensive to acquire. It
is worth exploring crowd-sourcing methods in the
future to make it more scalable and less costly.

5 Related Work

Event Temporal Anchoring. Event temporal
anchoring is first introduced by Setzer (2002) us-
ing temporal links (TLINKS) to specify the rela-
tion among events and time. However, the Time-
Bank Corpus and TimeBank Dense Corpus using
TimeML scheme (Pustejovsky et al., 2003b,a; Cas-
sidy et al., 2014) is either too vague and sparse or is
dense only with limited scope. Recently, Reimers
et al. (2016) annotate the start and end time of

each event on TimeBank. We have made several
extensions by adding event types, capturing uncer-
tainty by 4-tuple representation instead of TLINKS
so that indirect time can also be considered, and
extending event-event relations to document-level.

Models trained on TimeBank often formulate the
problem as a pair-wise classification for TLINKS.
Efforts have been made to use Markov logical net-
works or ILP to propagate relations (Bramsen et al.,
2006; Chambers and Jurafsky, 2008; Yoshikawa
et al., 2009; Do et al., 2012), sieve-based classi-
fication (Chambers et al., 2014), and neural net-
works based methods (Meng et al., 2017; Meng
and Rumshisky, 2018; Cheng et al., 2020). There
are also efforts on event-event temporal relations
(Ning et al., 2017, 2018, 2019; Han et al., 2019).

Especially, Reimers et al. (2018) propose a deci-
sion tree that uses a neural network based classifier
to find start and end time on Reimers et al. (2016).
Leeuwenberg and Moens (2018) use event time to
construct relative timeline.

Temporal Slot Filling. Earlier work on extract-
ing 4-tuple representation focuses on temporal slot-
filling (TSF, Ji et al., 2011, 2013) to collect 4-tuple
dates as temporal boundaries for entity attributes.
Attempts on TSF include pattern matching (Byrne
and Dunnion, 2011) and distant supervision (Li
et al., 2012; Ji et al., 2013; Surdeanu et al., 2011;
Sil and Cucerzan, 2014; Reinanda et al., 2013;
Reinanda and de Rijke, 2014). In our work, we
directly adopt 4-tuple as a fine-grained temporal
representation for events instead of entity attributes.

Temporal Reasoning. Some early efforts at-
tempt to incorporate event-event relations to per-
form temporal reasoning (Tatu and Srikanth, 2008)
and propagate time information (Gupta and Ji,



2009) based on hard constraints learned from an-
notated data. Our work is largely inspired from
Talukdar et al. (2012) on graph-based label propa-
gation for acquiring temporal constraints for event
temporal ordering. We extend the idea by construct-
ing rich event graphs, and proposing a novel GAT
based method to assign weights for propagation.

The idea of constructing event graph based on
sharing arguments is also motivated from Center-
ing Theory (Grosz et al., 1995), which has been
applied to many NLP tasks such as modeling local
coherence (Barzilay and Lapata, 2008) and event
schema induction (Chambers and Jurafsky, 2009).

6 Conclusions and Future Work

In this paper, we have created a new benchmark
for document-level event time extraction based on
4-tuple representation, which provides rich rep-
resentation to handle uncertainty. We propose a
graph-based time propagation and use event-event
relations to construct document-level event graphs.
Our experiments and analyses show the effective-
ness of our model. In the future, we will focus on
improving the fundamental pretraining model for
time to represent more fine-grained time informa-
tion and cross-document temporal aggregation.
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