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Abstract

We present a new information extraction sys-
tem that can automatically construct temporal
event graphs from a collection of news doc-
uments from multiple sources, multiple lan-
guages (English and Spanish for our experi-
ment), and multiple data modalities (speech,
text, image and video). The system ad-
vances state-of-the-art from two aspects: (1)
extending from sentence-level event extraction
to cross-document cross-lingual cross-media
event extraction, coreference resolution and
temporal event tracking; (2) using human cu-
rated event schema library to match and en-
hance the extraction output. We have made
the dockerlized system publicly available for
research purpose at GitHub1, with a demo
video2.

1 Introduction

Event extraction and tracking technologies can help
us understand real-world events described in the
overwhelming amount of news data, and how they
are inter-connected. These techniques have already
been proven helpful in various application domains,
including news analysis (Glavaš and Štajner, 2013;
Glavaš et al., 2014; Choubey et al., 2020), aiding
natural disaster relief efforts (Panem et al., 2014;
Zhang et al., 2018; Medina Maza et al., 2020), fi-
nancial analysis (Ding et al., 2014, 2016; Yang
et al., 2018; Jacobs et al., 2018; Ein-Dor et al.,
2019; Özbayoglu et al., 2020) and healthcare mon-
itoring (Raghavan et al., 2012; Jagannatha and Yu,
2016; Klassen et al., 2016; Jeblee and Hirst, 2018).

However, it’s much more difficult to remem-
ber event-related information compared to entity-
related information. For example, most people in

1Github: https://github.com/RESIN-KAIROS/RESI
N-pipeline-public

2Video: http://blender.cs.illinois.edu/softwa
re/resin/resin.mp4

the United States will be able to answer the ques-
tion “Which city is Columbia University located
in?”, but very few people can give a complete an-
swer to “Who died from COVID-19?”. Progress
in natural language understanding and computer
vision has helped automate some parts of event
understanding but the current, first-generation, au-
tomated event understanding is overly simplistic
since most methods focus on sentence-level se-
quence labeling for event extraction. Existing meth-
ods for complex event understanding also lack of
incorporating knowledge in the form of a repository
of abstracted event schemas (complex event tem-
plates), understanding the progress of time via tem-
poral event tracking, using background knowledge,
and performing global inference and enhancement.

To address these limitations, in this paper we will
demonstrate a new end-to-end open-source dock-
erized research system to extract temporally or-
dered events from a collection of news documents
from multiple sources, multiple languages (English
and Spanish for our experiment), and multiple data
modalities (speech, text, image and video). Our
system consists of a pipeline of components that
involve schema-guided entity, relation and complex
event extraction, entity and event coreference res-
olution, temporal event tracking and cross-media
entity and event grounding. Event schemas encode
knowledge of stereotypical structures of events
and their connections. Our end-to-end system has
been dockerized and made publicly available for
research purpose.

2 Approach

2.1 Overview

The architecture of our system is illustrated in Fig-
ure 1. Our system extracts information from multi-
lingual multimedia document clusters. Each docu-

https://github.com/RESIN-KAIROS/RESIN-pipeline-public
https://github.com/RESIN-KAIROS/RESIN-pipeline-public
http://blender.cs.illinois.edu/software/resin/resin.mp4
http://blender.cs.illinois.edu/software/resin/resin.mp4
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Figure 1: The architecture of RESIN schema-guided information extraction and temporal event tracking system.

ment cluster contains documents about a specific
complex event. Our textual pipeline takes input
from texts and transcribed speeches. It first extracts
entity, relation and event mentions (Section 2.2-2.3)
and then perform cross-document cross-lingual en-
tity and event coreference resolution (Section 2.4).
The extracted events are then ordered by tempo-
ral relation extraction (Section 2.5). Our visual
pipeline takes images and videos as input and ex-
tracts events and arguments from visual signals and
ground the extracted knowledge elements onto our
extracted graph via cross-media event coreference
resolution (Section 2.6). Finally, our system se-
lects the schema from a schema repository that best
matches the extracted IE graph and merges these
two graphs (Section 2.7). Our system can extract
24 types of entities, 46 types of relations and 67
types of events as defined in the DARPA KAIROS3

ontology.

2.2 Joint Entity, Relation and Event Mention
Extraction and Linking from Speech and
Text

For speech input, we apply the Amazon Transcribe
API 4 for converting English and Spanish speech
to text. When the language is not specified, it is
automatically detected from the audio signal. It
returns the transcription with starting and ending

3https://www.darpa.mil/program/knowledge-di
rected-artificial-intelligence-reasoning-over-
schemas

4https://aws.amazon.com/transcribe/

times for each detected words, as well as potential
alternative transcriptions.

Then from the speech recognition results and
text input, we extract entity, relation, and event
mentions using OneIE (Lin et al., 2020), a state-
of-the-art joint neural model for sentence-level in-
formation extraction. Given a sentence, the goal
of this module is to extract an information graph
G = (V,E), where V is the node set containing en-
tity mentions and event triggers and E is the edge
set containing entity relations and event-argument
links. We use a pre-trained BERT encoder (De-
vlin et al., 2018) to obtain contextualized word
representations for the input sentence. Next, we
adopt separate conditional random field-based tag-
gers to identify entity mention and event trigger
spans from the sentence. We represent each span,
or node in the information graph, by averaging
vectors of words in the span. After that, we calcu-
late the label scores for each node or edge using
separate task-specific feed forward networks. In
order to capture the interactions among knowledge
elements, we incorporate schema-guided global
features when decoding information graphs. For
a candidate graph G, we define a global feature
vector f = {f1(G), ..., fM (G)}, where fi(·) is a
function that evaluates whether G matches a spe-
cific global feature. We compute the global feature
score as uf , where u is a learnable weight vec-
tor. Finally, we use a beam search-based decoder
to generate the information graph with the highest
global score. After we extract these mentions, we

https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://www.darpa.mil/program/knowledge-directed-artificial-intelligence-reasoning-over-schemas
https://aws.amazon.com/transcribe/


apply a syntactic parser (Honnibal et al., 2020) to
extend mention head words to their extents. Then
we apply a cross-lingual entity linker (Pan et al.,
2017) to link entity mentions to WikiData (Vran-
dečić and Krötzsch, 2014)5.

2.3 Document-level Event Argument
Extraction

The previous module can only operate on the sen-
tence level. In particular, event arguments can of-
ten be found in neighboring sentences. To make
up for this, we further develop a document-level
event argument extraction model (Li et al., 2021)
and use the union of the extracted arguments from
both models as the final output. We formulate the
argument extraction problem as conditional text
generation. Our model can easily handle the case
of missing arguments and multiple arguments in
the same role without the need of tuning thresholds
and can extract all arguments in a single pass. The
condition consists of the original document and a
blank event template. For example, the template for
Transportation event type is arg1 transported
arg2 in arg3 from arg4 place to arg5 place. The de-
sired output is a filled template with the arguments.

Our model is based on BART (Lewis et al.,
2020), which is an encoder-decoder language
model. To utilize the encoder-decoder LM for argu-
ment extraction, we construct an input sequence of
〈s〉 template 〈s〉〈/s〉document 〈/s〉. All argument
names (arg1, arg2 etc.) in the template are replaced
by a special placeholder token 〈arg〉. This model
is trained in an end-to-end fashion by directly opti-
mizing the generation probability.

To align the extracted arguments back to the
document, we adopt a simple postprocessing pro-
cedure and find the matching text span closest to
the corresponding event trigger.

2.4 Cross-document Cross-lingual Entity and
Event Coreference Resolution

After extracting all mentions of entities and events,
we apply our cross-document cross-lingual entity
coreference resolution model, which is an exten-
sion of the e2e-coref model (Lee et al., 2017).
We use the multilingual XLM-RoBERTa (XLM-
R) Transformer model (Conneau et al., 2020) so
that our coreference resolution model can handle
non-English data. Second, we port the e2e-coref
model to the cross-lingual cross-document setting.

5https://www.wikidata.org/

Given N hybrid English and Spanish input docu-
ments, we create N(N−1)

2 pairs of documents and
treat each pair as a single “mega-document”. We
apply our model to each mega-document and, at
the end, aggregate the predictions across all mega-
documents to extract the coreference clusters. Fi-
nally, we also apply a simple heuristic rule that
prevents two entity mentions from being merged
together if they are linked to different entities with
high confidence.

Our event coreference resolution method (Lai
et al., 2021) is similar to entity coreference res-
olution, while incorporating additional symbolic
features such as the event type information. If
the input documents are all about one specific com-
plex event, we apply some schema-guided heuristic
rules to further refine the predictions of the neural
event coreference resolution model. For example,
in a bombing schema, there is typically only one
bombing event. Therefore, in a document cluster,
if there are two event mentions of type bombing
and they have several arguments in common, these
two mentions will be considered as coreferential.

2.5 Cross-document Temporal Event
Ordering

Based on the event coreference resolution compo-
nent described above, we group all mentions into
clusters. Next we aim to order events along a time-
line. We follow Zhou et al. (2020) to design a
component for temporal event ordering. Specifi-
cally, we further pre-train a T5 model (Raffel et al.,
2020) with distant temporal ordering supervision
signals. These signals are acquired through two set
of syntactic patterns: 1) before/after keywords in
text and 2) explicit date and time mentions. We
take such a pre-trained temporal T5 model and fine-
tune it on MATRES (Ning et al., 2018b) and use
it as the system for temporal event ordering. We
perform pair-wise temporal relation classification
for all event mention pairs in a documents.

We further train an alternative model from fine-
tuning RoBERTa (Liu et al., 2019) on MATRES
(Ning et al., 2018b). This model has also been suc-
cessfully applied for event time prediction (Wen
et al., 2021; Li et al., 2020a). We only consider
event mention pairs which are within neighboring
sentences, or can be connected by shared argu-
ments.

Besides model prediction, we also learn high
confident patterns from the schema repository. We

https://www.wikidata.org/


consider temporal relations that appear very fre-
quently as our prior knowledge. For each given
document cluster, we apply these patterns as high-
precision patterns before two statistical temporal
ordering models separately. The schema matching
algorithm will select the best matching from two
graphs as the final instantiated schema results.

Because the annotation for non-English data can
be expensive and time-consuming, the temporal
event tracking component has only been trained
on English input. To extend the temporal event
tracking capability to cross-lingual setting, we ap-
ply Google Cloud neural machine translation 6 to
translate Spanish documents into English and ap-
ply the FastAlign algorithm (Dyer et al., 2013) to
obtain word alignment.

2.6 Cross-media Information Grounding and
Fusion

Visual event and argument role extraction:
Our goal is to extract visual events along with their
argument roles from visual data, i.e., images and
videos. In order to train event extractor from vi-
sual data, we have collected a new dataset called
Video M2E2 which contains 1,500 video-article
pairs by searching over YouTube news channels
using 18 event primitives related to visual concepts
as search keywords. We have extensively anno-
tated the the videos and sampled key frames for
annotating bounding boxes of argument roles.

Our Visual Event and Argument Role Extraction
system consists of an event classification model
(ResNet-50 (He et al., 2016)) and an argument role
extraction model (JSL (Marasović et al., 2020)). To
extract the events and associated argument roles,
we leverage a public dataset called Situation with
Groundings (SWiG) (Marasović et al., 2020) to
pretrain our system. SWiG is designed for event
and argument understanding in images with ob-
ject groundings but has a different ontology. We
mapped the event types, argument role types and
entity names in SWiG to our ontology (covering 12
event sub-types) so that our model is able to extract
event information from both images and videos.
For videos, we sample frames at a frame rate of 1
frame per second and process them as individual
images. In this way, we have a unified model for
both image and video inputs.

6https://cloud.google.com/translate/docs/ad
vanced/translating-text-v3

Multimodal event coreference: We further ex-
tended the previous visual event extraction model
to find coreference links between visual and text
events. For the video frames with detected events,
we apply a weakly-supervised grounding model
(Akbari et al., 2019) to find sentences and video
frames that have high frame-to-sentence similar-
ity, representing the sentence content similar to
the video frame content. We apply a rule-based
approach to determine if a visual event mention
and a textual event mention are coreferential: (1)
Their event types match; (2) No contradiction in
the entity types for the same argument role across
different modalities. (3) The video frame and sen-
tence have a high semantic similarity score. Based
on this pipeline, we are able to add visual prove-
nance of events into the event graph. Moreover,
we are able to add visual-only arguments to the
event graph, which makes the event graph more
informative.

2.7 Schema Matching

Once we have acquired a large-scale schema reposi-
tory by schema induction methods (Li et al., 2020c),
we can view it as providing a scaffolding that we
can instantiate with incoming data to construct tem-
poral event graphs. Based on each document clus-
ter, we need to find the most accurate schema from
the schema repository. We further design a schema
matching algorithm that can align our extracted
event, entities and relations to a schema.

We first perform topological sort for events
based on temporal relations for both IE graph and
schema graph so that we can get linearized event
sequences in chronological order. Then for each
pair of IE graph and schema graph, we apply the
longest common subsequence (LCS) method to
find the best matching. Our schema matching con-
siders coreference and relations, which will break
the optimal substructure when only considering
event sequences. We extend the algorithm by re-
placing the best results for subproblems with a
beam of candidates with ranking from a scoring
metric that considers matched events, arguments
and relations. The candidates consist of matched
event pairs, and then we greedily match their argu-
ments and relations for scoring. We merge the best
matched IE graph and schema graph to form the
final instantiated schema.

https://cloud.google.com/translate/docs/advanced/translating-text-v3
https://cloud.google.com/translate/docs/advanced/translating-text-v3


3 Experiments

3.1 Data

We have conducted evaluations including schema
matching and schema-guided information extrac-
tion.

3.2 Quantitative Performance

Schema Induction. To induce schemas, we col-
lect Wikipedia articles describing complex events
related to improvised explosive device (IED), and
extract event graphs by applying our IE system.
The data statistics are shown in Table 1. We induce
schemas by applying the path language model (Li
et al., 2020c) over event paths in the training data,
and merge top ranked paths into schema graphs
for human curation. The statistics of the human
curated schema repository are shown in Table 2.

Split #Docs #Events #Arguments #Relations

Train 5,247 41,672 136,894 122,846
Dev 575 4,661 15,404 13,320
Test 577 5,089 16,721 14,054

Table 1: Data statistics of IED Schema Learning Cor-
pus.

Schema #Steps #Arguments #Temporal
Links

Disease Outbreak 20 94 20
Disaster Relief 15 85 15
Medical Treatment 8 37 8
Search and Rescue 11 50 10
General Attack 21 89 27
General IED 33 144 43
Roadside IED 28 123 36
Car IED 34 148 45
Drone Strikes IED 32 142 48
Backpack IED 31 138 40

Table 2: Data statistics of the induced schema library.

Schema-guided Information Extraction. The
performance of each component is shown in
Table 3. We evaluate the end-to-end perfor-
mance of our system on a complex event cor-
pus (LDC2020E39), which contains multi-lingual
multi-media document clusters. The data statistics
are shown in Table 4. We train our mention ex-
traction component on ACE 2005 (Walker et al.,
2006) and ERE (Song et al., 2015); document-
level argument exraction on ACE 2005 (Walker
et al., 2006) and RAMS (Ebner et al., 2020); coref-
erence component on ACE 2005 (Walker et al.,

2006), EDL 20167, EDL 20178, OntoNotes (Prad-
han et al., 2012), ERE (Song et al., 2015), CoNLL
2002 (Tjong Kim Sang, 2002), DCEP (Dias, 2016)
and SemEval 2010 (Recasens et al., 2010); tempo-
ral ordering component on MATRES (Ning et al.,
2018b); visual event and argument extraction on
Video M2E2 and SWiG (Marasović et al., 2020).
The statistics of our output are shown in Table 5.
The DARPA program’s phrase 1 human assess-
ment on about 25% of our system output shows
that about 70% of events are correctly extracted.

Component Benchmark Metric Score

Mention
Extraction

En
Trigger ACE+ERE F1 64.1

Argument ACE+ERE F1 49.7
Relation ACE+ERE F1 49.5

Es
Trigger ACE+ERE F1 63.4

Argument ACE+ERE F1 46.0
Relation ACE+ERE F1 46.6

Document-level
Argument Extraction

ACE F1 66.7
RAMS F1 48.6

Coreference
Resolution

En Entity OntoNotes CoNLL 92.4
Event ACE CoNLL 84.8

Es Entity SemEval 2010 CoNLL 67.6
Event ERE-ES CoNLL 81.0

Temporal
Ordering

RoBERTa MATRES F1 78.8
T5 MATRES-b Acc. 89.6

Visual Event Extraction Video M2E2 Acc. 70.0

Table 3: Performance (%) of each component.
MATRES-b refers to MATRES binary classification
that only considers BEFORE and AFTER relations.

Category Complex
Events

Documents Images Videos

# 11 139 1,213 31

Table 4: Data statistics for schema matching corpus
(LDC2020E39).

Category Extracted
Events

Schema
Steps

Instantiated
Steps

# 3,180 1,738 958

Table 5: Results of schema matching.

3.3 Qualitative Analysis
Figure 2 illustrates a subset of examples for the best
matched results from our end-to-end system. We

7LDC2017E03
8LDC2017E52
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Figure 2: The visualization of schema matching results from extracted graph and schema. The unmatched portions
for both extracted graph and schema are blurred.

can see that our system can extract events, entities
and relations and align them well with the selected
schema. The final instantiated schema is the hybrid
of two graphs from merging the matched elements.

4 Related Work

Text Information Extraction. Existing end-to-
end Information Extraction (IE) systems (Wadden
et al., 2019; Li et al., 2020b; Lin et al., 2020; Li
et al., 2019) mainly focus on extracting entities,
events and entity relations from individual sen-
tences. In contrast, we extract and infer arguments
over the global document context. Furthermore,
our IE system is guided by a schema repository.
The extracted graph will be used to instantiate a
schema graph, which can be applied to predict fu-
ture events.

Multimedia Information Extraction. Previous
multimedia IE systems (Li et al., 2020b; Yazici
et al., 2018) only include cross-media entity coref-
erence resolution by grounding the extracted visual
entities to text. We are the first to perform cross-
media joint event extraction and coreference reso-
lution to obtain the coreferential events from text,
images and videos.

Coreference Resolution. Previous neural mod-
els for event coreference resolution use non-
contextual (Nguyen et al., 2016; Choubey et al.,
2020; Huang et al., 2019) or contextual word repre-
sentations (Lu et al., 2020; Yu et al., 2020). We in-
corporate a wide range of symbolic features (Chen
and Ji, 2009; Chen et al., 2009; Sammons et al.,
2015; Lu and Ng, 2016, 2017; Duncan et al., 2017),
such as event attributes and types, into our event
coreference resolution module using a context-
dependent gate mechanism.

Temporal Event Ordering. Temporal relations
between events are extracted for neighbor events
in one sentence (Ning et al., 2017, 2018a, 2019;
Han et al., 2019), ignoring the temporal dependen-
cies between events across sentences. We perform
document-level event ordering and propagate tem-
poral attributes through shared arguments. Further-
more, we take advantage of the schema repository
knowledge by using the frequent temporal order
between event types to guide the ordering between
events.



5 Conclusions and Future Work

We demonstrate a state-of-the-art schema-guided
cross-document cross-lingual cross-media informa-
tion extraction and event tracking system. This
system is made publicly available to enable users
to effectively harness rich information from a va-
riety of sources, languages and modalities. In the
future, we plan to develop more advanced graph
neural networks based method for schema match-
ing and schema-guided event prediction.

6 Broader Impact

Our goal in developing Cross-document Cross-
lingual Cross-media information extraction and
event tracking systems is to advance the state-of-
the-art and enhance the field’s ability to fully un-
derstand real-world events from multiple sources,
languages and modalities. We believe that to make
real progress in event-centric Natural Language Un-
derstanding, we should not focus only on datasets,
but to also ground our work in real-world applica-
tions. The application we focus on is navigating
news, and the examples shown here and in the
paper demonstrate the potential use in news under-
standing.

For our demo, the distinction between benefi-
cial use and harmful use depends, in part, on the
data. Proper use of the technology requires that
input documents/images are legally and ethically
obtained. We are particularly excited about the
potential use of the technologies in applications
of broad societal impact, such as disaster moni-
toring and emergency response. Training and as-
sessment data is often biased in ways that limit
system accuracy on less well represented popula-
tions and in new domains. The performance of our
system components as reported in the experiment
section is based on the specific benchmark datasets,
which could be affected by such data biases. Thus
questions concerning generalizability and fairness
should be carefully considered.

A general approach to ensure proper, rather
than malicious, application of dual-use technol-
ogy should: incorporate ethics considerations as
the first-order principles in every step of the system
design, maintain a high degree of transparency and
interpretability of data, algorithms, models, and
functionality throughout the system. We intend
to make our software available as open source and
shared docker containers for public verification and
auditing, and explore countermeasures to protect

vulnerable groups.
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