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Abstract

Event time is one of the most important fea-
tures for event-event temporal relation extrac-
tion. However, explicit event time informa-
tion in text is sparse. For example, only
about 20% of event mentions in TimeBank-
Dense have event-time links. In this paper,
we propose a joint model for event-event tem-
poral relation classification and an auxiliary
task, relative event time prediction, which pre-
dicts the event time as real numbers. We
adopt a Stack-Propagation framework to in-
corporate predicted relative event time for
temporal relation classification and keep the
differentiability. Our experiments on MA-
TRES dataset show that our model can signif-
icantly improve the RoBERTa-based baseline
and achieve state-of-the-art performance. 1

1 Introduction

Event temporal ordering is an important task to
understand the evolution of events. Event-event
temporal relation extraction aims to automatically
extract the temporal order given a pair of events and
further build a temporal graph. Figure 1 illustrates
an example sentence and its temporal graph. There
are three events in the sentence, said, identified
and run. The temporal relation between said and
identified is AFTER, and the temporal relations
between said and run and between identified and
run are BEFORE.

Neural network based methods have achieved
promising improvement for temporal relation ex-
traction (Meng et al., 2017; Meng and Rumshisky,
2018; Cheng et al., 2020; Ballesteros et al., 2020;
Wen et al., 2021a). They mostly consider the task
as pairwise classification. There are also efforts fo-
cusing on the global structures, including Markov
logical networks and Integer Linear Programming

1 The resource for this paper is available at https:
//github.com/wenhycs/EMNLP2021-Utilizing
-Relative-Event-Time-to-Enhance-Event-Ev
ent-Temporal-Relation-Extraction
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Microsoft (e1, said) it has (e2, identified) three compa-
nies for the China program to (e3, run) through June .

Figure 1: An example sentence and their temporal rela-
tions. In this example, there three different events, and
the final extracted graph shows the pair-wise temporal
relation extraction results.

(ILP) based methods (Bramsen et al., 2006; Cham-
bers and Jurafsky, 2008; Yoshikawa et al., 2009;
Do et al., 2012; Ning et al., 2017, 2018a, 2019; Han
et al., 2019). Though achieving great success, event
time, an important feature, is often overlooked by
previous work. Conceptually, if we know the ex-
act time information for all events, their temporal
relations can be naturally derived. For example, if
we know that event A happened on Monday while
event B happened on Tuesday in the same week,
it is obvious that A happened BEFORE B. How-
ever, explicit time arguments can be rarely found in
text, especially in news articles (Wen et al., 2021b).
Leeuwenberg and Moens (2018) propose to pre-
dict the relative timeline and directly compare the
relative timestamps of events to derive their tempo-
ral relations. Although showing promising perfor-
mance, those predicted timestamps do not consider
information from event pairs and cannot handle the
uncertain temporal boundary of an event expressed
in text to predict relations such as VAGUE.

In this paper, we follow the idea of Leeuwen-
berg and Moens (2018) to predict the relative event
time for temporal relation extraction, where the rel-
ative time is a real number indicating the relative
position of the event in the timeline. Instead of
directly comparing relative event time as Leeuwen-
berg and Moens (2018), we consider them as addi-
tional features and incorporate them into training
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the temporal relation classifier. We propose a joint
model with Stack-Propagation framework (Zhang
and Weiss, 2016) to connect relative event time
prediction and temporal relation extraction, which
can exploit the explicit features from the former
task for the latter task (Qin et al., 2019). Our model
directly uses the output of relative event time pre-
diction as the input for temporal relation classifica-
tion so that the classification can benefit from both
representations of event pairs and the predicted
relative event time. Because we do not break the
differentiability between two tasks, the training ob-
jective for one task can also promote another task.
Similarly to Leeuwenberg and Moens (2018), we
adapt margin-based optimization to constrain the
distance between two relative event time values,
given their temporal relation.

Our experiments show that the relative event
time prediction can significantly help learn better
temporal relation extraction, compared to vanilla
RoBERTa-based (Liu et al., 2019) baseline. We
have also achieved similar performance compared
to the state-of-the-art temporal relation extraction
approach that uses additional data (Ballesteros
et al., 2020).

2 Approach

Microsoft said it has identified three

RoBERTa Encoding

...
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Figure 2: The overall architecture.

In this section, we will discuss the relative event
time prediction for temporal relation extraction.
The overall approach is illustrated in Figure 2.

2.1 Our Baseline Model
Our baseline is a pretrained language model based
pairwise classification model. It takes a sequence
of tokens X with length n as input after prepro-
cessing required by pretrained language models,

such as subword tokenization (Devlin et al., 2019)
or byte pair encoding (BPE, Liu et al., 2019). The
input also includes the positions of two event men-
tions (ei, ej) in the text. For simplicity, we only
use the start positions from the corresponding event
mention spans. We denote the start position of an
event mention ei as pi. The baseline model is used
to predict the temporal relations between the given
two event mentions.

The model first computes the contextualized rep-
resentation for each input token using a pretrained
language model (Devlin et al., 2019; Liu et al.,
2019). We denote the contextualized representation
as H , where hi is the contextualized representation
for the token at position i.

Then we concatenate the representations of any
given two event mentions using the representation
at their corresponding start positions,

ci,j =
[
hpi ;hpj

]
. (1)

We use a two-layer feed-forward neural network
(FFN) with a tanh activation function and a softmax
layer to convert the representation into a probability
distribution,

P (r | ei, ej) = softmax (ai,j) , (2)

ai,j = FFN2(tanh(FFN1(ci,j))), (3)

where FFNi(x) = W ix+ bi.

2.2 Relative Timestamp Prediction
To better utilize the contextual information for
events, we use an auxiliary task, relative event time
prediction, to predict event time as a real number
for all event mentions given its context, similar to
Leeuwenberg and Moens (2018). Contrary to the
above baseline method that takes a pair of repre-
sentations and predict the pair-wise relation, event
time information is only related to the event itself.
Therefore, we predict the relative event time infor-
mation by mapping the representation of an event
mention ei from the pretrained language model to
a real number, ti ∈ (−1, 1), where we use a two-
layer feed-forward network with tanh activation
functions,

ti = tanh(FFN4(tanh(FFN3(hpi)))). (4)

Although we may not have explicit time informa-
tion in the given context, the gold-standard pair-
wise temporal relations can be considered as inci-
dental supervision to constrain the predicted time.



For example, given two event mentions ei and ej ,
and their temporal relation ei BEFORE ej , then
their predicted time ti and tj should follow ti < tj .
Similarly, if their relation is EQUAL, then the dis-
tance between their predicted time should be as
close as possible.

Therefore, we use a margin-based optimization
method to constrain our predicted relative event
time. We use different margins based on different
temporal relations,

Lt = 1[r(ei,ej) = BEFORE] max (0, 1− (tj − ti))
+ 1[r(ei,ej) = AFTER] max (0, 1− (ti − tj))
+ 1[r(ei,ej) = EQUAL]|ti − tj |. (5)

If ei is BEFORE ej , the above optimization will
maximize the distance (tj − ti) unless it is equal or
larger than 1, which follows the constraint ti < tj .
On the contrary, If ei is AFTER ej , it will maximize
the distance (ti − tj), which follows the constraint
ti > tj . If ei is EQUAL ej , then it instead mini-
mizes the distance |ti − tj |.

2.3 Stack-Propagation on Relative
Timestamp

After obtaining the relative time for each event,
we further incorporate this predicted feature into
event-event temporal relation extraction. Since
both relative time prediction and temporal relation
extraction are based on contextualized representa-
tions from the pretrained language model, we adopt
Stack-Propagation framework to connect these two
tasks while preserving the differentiability.

Specifically, besides the event-pair contextual-
ized representation that the baseline method uses
for pair-wise temporal relation classification, we
further incorporate their predicted relative event
time into classification,

ai,j = FFN2(tanh(FFN1([ci,j ; ti; tj ]))). (6)

During training, we use cross-entropy objective
for temporal relation classification,

Lr = − logP (r = r(ei,ej) | ei, ej). (7)

The final training objective is the interpolation of
the classification task and time prediction task,

L = αLt + Lr. (8)

Since we keep the differentiability for classifica-
tion, the gradient from cross-entropy can be propa-
gated to timestamps and jointly train relative time
prediction.

3 Experiments

Train Development Test

Docs 260 21 20
Relations 10,888 1,852 840

Table 1: Data splits and statistics on MATRES.

3.1 Dataset
We conduct our experiments on MATRES (Ning
et al., 2018b). MATRES contains refined annota-
tions on TimeBank (Pustejovsky et al., 2003; Cas-
sidy et al., 2014) and TempEval (UzZaman et al.,
2013) (containing AQUAINT and Platinum sub-
sets) documents. We follow the previous work that
uses TimeBank and AQUAINT for training and we
use Platinum as the test set. We randomly select
21 documents as development set. The detailed
statistics can be found in Table 1.

3.2 Experimental Setup
We use F1 to evaluate our system performance,
following (Ning et al., 2019), where we consider
VAGUE as “no relation”. We compare our model
with existing systems including 1) BiLSTM+MAP:
A BiLSTM based joint event and temporal relation
extraction model with MAP inference (Han et al.,
2019). 2) LSTM+TEMPROB+ILP: LSTM-based
method incorporating pretrained language model
embedding, commensense prior (TEMPROB) and
ILP (Ning et al., 2019). 3) Joint Constrained Learn-
ing: A constrained learning based optimization for
joint event temporal and hierarchy relation extrac-
tion (Wang et al., 2020). 4) Self-Training: Multi-
task self-training on temporal relation extraction us-
ing additional time annotation from ACE2005 and
the original TimeBank (Ballesteros et al., 2020).

We use RoBERTa-large as our pretrained lan-
guage model. Our best model is optimized using
AdamW for 30 epochs with learning rate between
{1e-5, 2e-5} for both pretrained model and other
parameters. We use linear scheduler with warmup
proportion at 0.1. We set weight decay to 0.01 and
dropout rate to 0.1 for all parameters. The training
batch size is 16. We use 5 different random seeds
for our experiments, and choose the learning rate
and model with the best averaged performance on
development set for comparison on test set. The
hidden size of FFN1(·) is 1024. The hidden size
of FFN3(·) is 1026 (adding two predicted time as
input). α is set to 1.



Model Precision Recall F1

BiLSTM+MAP - - 75.5
LSTM+TEMPROB+ILP 71.3 82.1 76.3

Joint Constrained Learning* 73.4 85.0 78.8
Self-Training* - - 81.6

Our Model 78.4 85.2 81.7

Table 2: Temporal relation extraction results on MA-
TRES. Precision and recall are not reported by (Han
et al., 2019; Ballesteros et al., 2020). We report our
averaged test performance on all metrics over 5 ran-
dom seeds. Models marked * use additional training
resources.

3.3 Overall Performance

Our overall performance is shown in Table 2.
Among these baseline systems, the multi-task
self-training method (Ballesteros et al., 2020) has
achieved the best performance. Our proposed
method can achieve slightly better performance
against their system, without introducing additional
annotated and raw data, which demonstrates the
effectiveness of the relative timestamp prediction
objective, and the stack-propagation based method
to incorporate predicted timestamps.

3.4 Ablation Study

Model Precision Recall F1

Vanilla Classifier 78.1 82.5 80.2
Multi-Task 76.5 85.2 80.6

Stack-Propagation 78.4 85.2 81.7
Time Comparison 75.5 86.8 80.7

Table 3: Ablation study results (%) on our proposed
method. We report our averaged test performance on
all metrics. p < 0.05 for the two-sided heteroscedastic
independent t-test between Vanilla RoBERTa and our
model.

We conduct ablation study for relative event time
prediction and Stack-Propagation and the results
are shown in Table 3. We can find that adding
relative time prediction as an auxiliary task (Multi-
Task) helps improve the performance, and incor-
porating relative event time as features (Stack-
Propagation) further boosts the performance. We
also compare with training relative time prediction
and directly using relative timestamps to derive the
temporal relation labels, similar to Leeuwenberg
and Moens (2018). The model has the highest re-
call performance because it aggressively classifies
relations as BEFORE or AFTER labels. However,
because it cannot handle VAGUE, it’s low in pre-
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Figure 3: Visualization of distances of the relative
timestamps and their predicted labels.

He (said, e1) he (discussed, e2) the issue with Mr. Ne-
tanyahu during his visit to Israel this week, and that they
(agreed, e3) the timing was good for a discussion with the
Turkish leader.
te1 = 0.9937, te2 = −0.7451, te3 = −0.0770
r(e1,e2) = AFTER, r(e1,e3) = AFTER, r(e2,e3) = BEFORE
Traditionally , the (intentionally) funny lines by our pres-
idents have (had, e1) one thing in common: They were
self-deprecating. Sure, some presidents have (used, e2)
jokes to take jabs at their opponents, but not to the extent
of Obama.
te1 = −0.5162, te2 = −0.5209
r(e1,e2) = VAGUE

Table 4: Examples of temporal relation extraction and
relative even time prediction results. The first exam-
ple shows the correlation between predicted relative
event time and temporal relations. The second example
shows that the model can use event-pair information to
predict VAGUE labels.

cision even compared to vanilla RoBERTa-based
classifier (Vanilla Classifier).

3.5 Qualitative Analysis
We visualize the distance values of the relative
event time for given event pairs and their predicted
labels in Figure 3, where a negative value, for ex-
ample, naturally indicates that the time of the for-
mer event is earlier than the latter event. We can
find that BEFORE and AFTER predictions almost
correlate with the distance values of the relative
event time pairs. We can also find that VAGUE

and EQUAL predictions are centered near 0, which
shows that our model can take some event pairs that
are hard to compare their predicted relative times-
tamps and classify them as VAGUE or EQUAL.

Table 4 demonstrates two example system out-
puts. The first case shows that the temporal rela-
tion extraction correlates with relative event time
prediction, while the second case shows that our
model can utilize the event-pair representation and



classify relation as VAGUE rather than completely
depending on predicted timestamps.

4 Related Work

Earlier efforts on temporal relation extraction focus
on global inference using methods such as Integer
Linear Programming (Bramsen et al., 2006; Cham-
bers and Jurafsky, 2008; Yoshikawa et al., 2009;
Do et al., 2012; Chambers et al., 2014). Recently,
neural network-based methods have also achieved
promising improvement (Meng et al., 2017; Meng
and Rumshisky, 2018; Ning et al., 2018a, 2019;
Han et al., 2019; Wang et al., 2020; Cheng et al.,
2020). Especially, Goyal and Durrett (2019) use
LSTM to encode Timex for temporal relation ex-
traction, Ballesteros et al. (2020) jointly train event
time arguments extraction from ACE2005. The
most related work is (Leeuwenberg and Moens,
2018), which proposes to predict relative event time
and uses the comparison of relative timestamps as
temporal relations. Our work focuses on jointly
training relative time prediction and temporal rela-
tion extraction and utilizes relative timestamps as
features via the Stack-Propagation framework.

5 Conclusions and Future Work

In this paper, we leverage relative event time predic-
tion that can ground events onto a relative timeline
to help event-event temporal relation extraction.
We use Stack-Propagation framework to further in-
corporate predicted timestamp explicit for relation
classification. Our experiment results demonstrate
the effectiveness of our proposed method. In the
future, we will focus on extending the relative time
prediction to cross-document setting and support
cross-document temporal relation extraction.
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